Skip to main content

Maps of Sweden in GeoParquet for easy usage.

Project description

swemaps

Maps of Sweden in GeoParquet for easy usage.

The parquets have been created from files published by:

The map data includes counties, municipalities, electoral districts and FA regions. The original geometries have been transformed from SWEREF 99 TM (EPSG:3006) to WGS 84 (EPSG:4326) for better out-of-the-box compatibility with interactive and web-based toolkits such as Folium and Plotly. The column names have also been somewhat sanitized (e.g. KnKod -> kommun_kod).

The package gets you the file path so that you can load it with your prefered tool, for example PyArrow or GeoPandas. An extra convenience function is included to quickly convert a PyArrow Table object to GeoJSON.

Made for Python with inspiration from swemaps2.

Municipalities and counties

Municipalities Counties
municipalities counties

PyArrow example with Plotly

>>> import plotly.express as px
>>> import pyarrow.parquet as pq
>>> import swemaps

# Load the map for the specified type
>>> kommuner = pq.read_table(swemaps.get_path("kommun"))

>>> kommuner.column_names
['kommun_kod', 'kommun', 'geometry']

# The convenience function returns GeoJSON from a PyArrow table object
>>> geojson = swemaps.table_to_geojson(kommuner)

# Here's a dataframe with municipalities and some random values that we can plot
>>> df.head()
shape: (5, 2)
┌──────────┬───────┐
 Kommun    Value 
 ---       ---   
 str       i64   
╞══════════╪═══════╡
 Ale       544   
 Alingsås  749   
 Alvesta   771   
 Aneby     241   
 Arboga    763   
└──────────┴───────┘

# Use Plotly to create a choropleth using the dataframe and GeoJSON
>>> fig = px.choropleth(
        df,
        geojson=geojson,
        color="Value",
        locations="Kommun",
        featureidkey="properties.kommun",
        projection="mercator",
        color_continuous_scale="Viridis",
        fitbounds="locations",
        basemap_visible=False,
    )

You might want to subset the map of municipalities for a specific county or a group of counties. Since the geometry is loaded as a PyArrow table the filter operation is straightforward.

>>> import pyarrow.compute as pc

>>> kommuner.schema 

kommun_kod: string
kommun: string
geometry: binary
  -- field metadata --
  ARROW:extension:metadata: '{"crs":{"$schema":"https://proj.org/schemas/' + 1296
  ARROW:extension:name: 'geoarrow.wkb'
-- schema metadata --
geo: '{"version":"1.1.0","primary_column":"geometry","columns":{"geometry' + 1621

# County code for Skåne is 12
>>> kommuner = kommuner.filter(pc.starts_with(pc.field("kommun_kod"), "12"))

>>> geojson = swemaps.table_to_geojson(kommuner)

You could also use list comprehension on the GeoJSON to filter it.

>>> geojson["features"] = [
        feature
        for feature in geojson["features"]
        if feature["properties"]["kommun_kod"].startswith("12")
        ]

Anyway, now we can plot Skåne.

>>> skane = px.choropleth(
        df,
        geojson=geojson,
        color="Value",
        locations="Kommun",
        featureidkey="properties.kommun",
        projection="mercator",
        color_continuous_scale="Viridis",
        fitbounds="locations",
        basemap_visible=False,
        title="Skåne municipalities"
    )

skane.show()

skåne

GeoPandas and plotnine

Another possibility is to load the GeoParquet into a GeoDataFrame.

>>> import geopandas as gpd

>>> gdf = gpd.read_parquet(swemaps.get_path("lan"))

>>> gdf.head()

  lan_kod                lan                                           geometry
0      01     Stockholms län  MULTIPOLYGON (((17.24034 59.24219, 17.28475 59...
1      03        Uppsala län  MULTIPOLYGON (((17.36606 59.61224, 17.35475 59...
2      04  Södermanlands län  MULTIPOLYGON (((15.95815 58.96497, 15.8613 58....
3      05  Östergötlands län  MULTIPOLYGON (((14.93369 58.13112, 14.89472 58...
4      06     Jönköpings län  MULTIPOLYGON (((14.98311 57.9345, 15.00458 57....

# And with matplotlib installed as well we can have quick look
>>> gdf.plot()

län

For best results with plotnine you can either reproject to SWEREF 99 TM or set the aspect ratio in coord_fixed(). A ratio of around 1.96 to 1.98 should be near optimal.

>>> gdf = gpd.read_parquet(swemaps.get_path("kommun"))

# Insert some random values
>>> gdf["value"] = np.random.randint(1, 600, size=len(gdf["kommun"]))

# Reproject back to SWEREF 99 TM
>>> gdf = gdf.to_crs(epsg=3006)

>>> (
    ggplot(gdf, aes(fill="value"))
    + geom_map(show_legend=False)
    + coord_fixed() # Or skip the reprojection above and set ratio manually here
    + scale_fill_cmap("YlGnBu")
    + theme(
        axis_ticks=element_blank(),
        panel_background=element_rect(fill="white"),
        axis_text_x=element_blank(),
        axis_text_y=element_blank(),
    )
  )
SWEREF 99 TM WGS 84
sweref99tm wgs84

Additional map data

Larger datasets including geometries for electoral districts, RegSO, and DeSO can be manually fetched. Once downloaded the files are cached for efficient reuse.

>>> districts = swemaps.fetch_map("valdistrikt_2022")
>>> districts
PosixPath('/home/stefur/.cache/swemaps-data/v0.2.0/valdistrikt_2022.parquet')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

swemaps-0.2.1.tar.gz (816.4 kB view details)

Uploaded Source

Built Distribution

swemaps-0.2.1-py3-none-any.whl (244.4 kB view details)

Uploaded Python 3

File details

Details for the file swemaps-0.2.1.tar.gz.

File metadata

  • Download URL: swemaps-0.2.1.tar.gz
  • Upload date:
  • Size: 816.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for swemaps-0.2.1.tar.gz
Algorithm Hash digest
SHA256 41f6ed0aa6de0cd00ce2b45b73af7cbecc96ef37cf9bb4ad549e559496a8a71a
MD5 58c40615e90763146da05eddd059e711
BLAKE2b-256 cf4d125e42985874fd2f77b5ff3ac2b8b5c78d364012934a40a7bdbabc2a0a33

See more details on using hashes here.

File details

Details for the file swemaps-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: swemaps-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 244.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for swemaps-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 85a0754428d585b8c740598cc04d9598ec733d9868c234abd4eafbbff375c1ef
MD5 67ec27b4bb8511ed6de5d77a56a72810
BLAKE2b-256 bcdb64c922ef103b0267420371f1ec83dae439a4c57b2df59b5855153cc6fd00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page