Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status AppVeyor Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation.

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

swiglpk-1.4.0.win-amd64-py3.6.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.0.win-amd64-py3.5.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.0.win-amd64-py3.4.exe (736.6 kB view details)

Uploaded Source

swiglpk-1.4.0.win-amd64-py3.3.exe (736.6 kB view details)

Uploaded Source

swiglpk-1.4.0.win-amd64-py2.7.exe (738.7 kB view details)

Uploaded Source

swiglpk-1.4.0.win32-py3.6.exe (908.3 kB view details)

Uploaded Source

swiglpk-1.4.0.win32-py3.5.exe (908.3 kB view details)

Uploaded Source

swiglpk-1.4.0.win32-py3.4.exe (632.9 kB view details)

Uploaded Source

swiglpk-1.4.0.win32-py3.3.exe (632.9 kB view details)

Uploaded Source

swiglpk-1.4.0.win32-py2.7.exe (632.0 kB view details)

Uploaded Source

swiglpk-1.4.0-cp36-cp36m-win_amd64.whl (529.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-1.4.0-cp36-cp36m-win32.whl (445.8 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-1.4.0-cp36-cp36m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.0-cp36-cp36m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (811.9 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.0-cp35-cp35m-win_amd64.whl (529.9 kB view details)

Uploaded CPython 3.5m Windows x86-64

swiglpk-1.4.0-cp35-cp35m-win32.whl (445.8 kB view details)

Uploaded CPython 3.5m Windows x86

swiglpk-1.4.0-cp35-cp35m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.0-cp35-cp35m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (811.9 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.0-cp34-cp34m-win_amd64.whl (512.3 kB view details)

Uploaded CPython 3.4m Windows x86-64

swiglpk-1.4.0-cp34-cp34m-win32.whl (439.7 kB view details)

Uploaded CPython 3.4m Windows x86

swiglpk-1.4.0-cp34-cp34m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.0-cp34-cp34m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (811.8 kB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.0-cp33-cp33m-win_amd64.whl (512.3 kB view details)

Uploaded CPython 3.3m Windows x86-64

swiglpk-1.4.0-cp33-cp33m-win32.whl (439.8 kB view details)

Uploaded CPython 3.3m Windows x86

swiglpk-1.4.0-cp27-cp27mu-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.0-cp27-cp27mu-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.0-cp27-cp27m-win_amd64.whl (512.9 kB view details)

Uploaded CPython 2.7m Windows x86-64

swiglpk-1.4.0-cp27-cp27m-win32.whl (433.8 kB view details)

Uploaded CPython 2.7m Windows x86

swiglpk-1.4.0-cp27-cp27m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.0-cp27-cp27m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (814.9 kB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file swiglpk-1.4.0.win-amd64-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win-amd64-py3.6.exe
Algorithm Hash digest
SHA256 5c2f3cb2438b047bb8be7e9469d08e7fa3b2cde84eb9e4ea973baa7edc651349
MD5 48e0d30546dd2e8f3d85d589bf12dcf9
BLAKE2b-256 784ea869abd7746fed9bbaf659ba671aa79ba34dd27b54ebd7a1aaae29f6d736

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 74e7cef30f027c3d2d3b186e14080ee989d8870c19403d3749505590e1947656
MD5 889bc199cb0da0a274f516f5812f0f35
BLAKE2b-256 3908422dca18046825152d03c42ce724389afe9b9bee5c245b266a235e51c4ad

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 e9817bd939de9660a8cee6af4b6eb8492241de3ac699f81de4d1ade4ebd93f7f
MD5 4ff30925cfbfbf7043e5a171567d5014
BLAKE2b-256 cf57312e7cc2eb5234c2ffadd955d2c49d28974f35ba5581f8faf18ea0e7c2c3

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 da7217de0ba9519202661e1ffb646beeeb314758834aa7025b1e5e3f1ec3bce6
MD5 6c99ab33cdd69e6187781558d8b288cd
BLAKE2b-256 d65bb94539817cea2f626adf5f69718903e8cdda1f8f93aaab14deb1b7a2f6c3

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 270da521c63f83af7af5c4de588fbd844bdec8a3410f0a5e83e17658bd8c21f8
MD5 27387436d6df6823702ca7dd0def57bc
BLAKE2b-256 329d5ba30789614e7149be1906467ff94f06a21b1a59cc944f0c88c95a492b9f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win32-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win32-py3.6.exe
Algorithm Hash digest
SHA256 41b30dde890600ba0209fed5a1f7446ec94623db033b9f02de30d4ba0188d26a
MD5 4da56f3e651c512dc768c04aa106b63a
BLAKE2b-256 4e0c6d4d7d98783308ebb3eb166d6e940b31a8e7a607f245071a4db994a15387

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win32-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win32-py3.5.exe
Algorithm Hash digest
SHA256 c6517ac070e5af0dbb314ad6d7eff052d5a290565d64f802adf5f8e3d4f39f88
MD5 d5ae7925c8fc8d7aaa704f09c6703873
BLAKE2b-256 590a8b0ab45054feffeb9de6033e5a0d7cf29b50e27583e6ca20e458dde4f50b

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win32-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win32-py3.4.exe
Algorithm Hash digest
SHA256 5022b6cfaec03a00a1acdb8fa74aa287b174cd7e635d1d8a38d7a6f0059c4a85
MD5 1736e0db0c6d278b3c25ae361594da29
BLAKE2b-256 7ae39e144c325fb55df2e5f5a4c7d74d88f5ef2151d19f62c5e2c6ddb1773ee7

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win32-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win32-py3.3.exe
Algorithm Hash digest
SHA256 54ca753266f57ff23dfd846d0f5890c1de49dcb507f8b09a6ef3a0f4368c6c77
MD5 e4aa04db5b45e4b105ba46041b6833f1
BLAKE2b-256 f777481c17b5a47ceaefb40906c670670e0ad4ee53fd2dab05c7407383df6713

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0.win32-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0.win32-py2.7.exe
Algorithm Hash digest
SHA256 6e0df8313d641eedddb9213f410f216dc664d04af3ab57eb7caab7e492f20412
MD5 78771d1dc86c576003e43e995eae6d45
BLAKE2b-256 cbdd2d4266683d19a5576a02ec0b2bb893f55eb30d3eafbf3a4a1e0fadee8515

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 76a0b25e4d4194f6e02f3eff16f327272a555bbf60a84594aab1efea03707ed8
MD5 3653830eab9f5c2eeb682a72df7b6000
BLAKE2b-256 f1edf4c91b8880cfd87fbf77fbb7e385251f1c65ad011c1d58229333ff268326

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f49f104af9354724090e56115d7945a673e930c258c21d7e5878e6d8cda5ed58
MD5 855af7977403d57be0ec766fef2de629
BLAKE2b-256 d2de758fa6db219acf9a1d21b276b684179fdfb03684d3582be4730f2c9b034e

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 69a0c5cea0af0b65706e1a894f23b32874e2898448c1e110e5a5b6792722fd71
MD5 c51fa28915e682cae406567bf71ba24b
BLAKE2b-256 10cf947595dee8a2bc4763aadfddf83b4ac3c81def63d87fe7ab61f7760de9fb

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0d96f6bdc03682756ffcfb5205699a27fb7e6f256a5b917120aaacaf2ab6ae50
MD5 807fd54f5ed044b95380f7b86348d4e3
BLAKE2b-256 c0a2cce5f6c5b313ee40fe005d0d564067f9ae79e4b23ccd96093204b69a7885

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 898d30d3eab4153ebe66ff408de2eab1db0e6a440c2b8c805b8c6e2caf34b356
MD5 c37aeaecc9c763f87be763e70deca654
BLAKE2b-256 9eab7e0a31623ec02bb80f433bca19fe6b711534df6709cdbd137cc7338a35a8

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 90f83dd536d0c592352ea1ac27f4021fa5d94a1aa7a61c741d8f0283bdadfdc4
MD5 2a842b498910da978dd610192c20c8d1
BLAKE2b-256 d41eda22de81e44bbea261f6a4ae84e272f7828a75c21919b6af5ee6e701f2be

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 f45b67938bd6e537869c693dc8bad737e69d191c48e45af33e0dafe20def21f3
MD5 e7bc36cf0eb9bc0591407568540cbdb3
BLAKE2b-256 d227862dfd56c1a8087f7047e9b0984f76e5db82ce379634e6bdf362d05cde44

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 39afa6dd2b13c9de2324d07ee493db1645554d0bb560d7aedacdd8739a221afa
MD5 2e2166184a1dbd9c09dc843a7a1b0a9d
BLAKE2b-256 12983b7aa6604855d4f18da622a7bf251f841043f970a23ea04603de56b08e7a

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 da21feabcff8aff58322f2b45d76eeb2b9b4e95254903e861ae612bcdbe832ce
MD5 4cd2e4f0532d78f5d519f14685981f74
BLAKE2b-256 57c234590dd5d07b399aa32cfd7bf5d0c4a839bc7fbe955f93c3fe45d6a5f80d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d3d9513b0379eb723c4f6fc3cb7625cda5fc3124240f80f97324d065823cdb84
MD5 f30a598b678834b824ff069bcf44f22b
BLAKE2b-256 89243b000d20d951d73d7fdd80624e684b07add45f4da57b331dbba12817c2b0

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 1c455cc4c8db70ec76c3d8ebfed4dddd02704bd7672123b8360c2dc3893afcde
MD5 7bac1f2142f623d1104d9360c8743617
BLAKE2b-256 ec57674ba2dd2477ca4e33f69b5c29dbe1a7663c4c3ac71c5d03903c44bc2c71

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 18dd9a9cc5802b91eac967b3eb6cf5955d1a2cd7bf72e5205dcde4afd9badfe5
MD5 b44754e63745ddc5fef21b6ae1137b9e
BLAKE2b-256 d8288adde786c4e1a778f40cb55ce4efddbc6785e5fd1e50bcfb67129425283d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2269017941f0eaeffe0b534d8176ba38279e23ad2929d81ef092dc7fc9be1ea5
MD5 8ceb864519c40d7e88b7aabf71c51bf9
BLAKE2b-256 cea49133579d0ccdfc9fc755fc9434e9b98ef27178796fc9b78b9c06be290744

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8526d51b5f3f000b4fda821b27cf97f56e077e66e82f39b035c71e2dc41f4d74
MD5 697a16cd964b8d2e3c04766b6a22e7b9
BLAKE2b-256 54a1b977df2590031760fd1d32b37e38028d878615a10a0aeae87d90e1e74b58

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d178a099f91c27033483b4c00f58ca81c42f57a1ed59190c9617155a9c658782
MD5 608310b011f195b6b3a4179531d72591
BLAKE2b-256 ddd6300b68cee433a2ea3589bc8f423a5b1857196ce905caf6a3d9d74bc942d5

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 3006cb468458bb9ca6e1bd7eba377f549837919beccfba49182d81b14167379b
MD5 7366dd9b8cd9bcc14f06e379313427d7
BLAKE2b-256 3a2c3138493b9b3f932b2054b15fd49a0e295988a83db776cca96db64ca7e0d0

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 2fe6a97a1bc9706a0d929c8881b834906b609dc903e58af6d655e16a294052a0
MD5 81a6030bfe53a55ac04428d56f910bd4
BLAKE2b-256 10703677a6b7a2554e48e59bec31bdffd8edfc24defc82edfc8a31cb3b855950

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6b132dc60198277d322c74deadbbca2223e1b81ac91186e25ed42252700c76c7
MD5 3c4d7572d515eb3d61956dab01341707
BLAKE2b-256 a44d7c0bdf63912f2098910a10ef68ee0d791b48b42f5db669c80d74a7263d19

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 05a95f555988d3481b487a899037c2d9b0d8290f497acb513a093d8b70452199
MD5 625c766c6c054bf9fd38014a19c813a8
BLAKE2b-256 1a3d546e58e195cb9571e82cbfb5c2de55f520769a68040b9ccd83bdd1926dae

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 6c1d70257c3adc523706cc12f6e3a11ecf6dfb027e2fb898d02a87212e54c5d3
MD5 feb9d19e2ce1e5fb77922ae219e12b5c
BLAKE2b-256 59fe6486fdfce8b950bf6c2cae4432a643874b941fa896ccc31388220d6caaf1

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 993a59c3dc22da0d0fcb6dcbe7808c3134449bb689843437f5deda473c1c1ece
MD5 4a6cff0a9dbbe5c6183492da50395b57
BLAKE2b-256 2a0c92275dd769ae193d09edebba36afe2abf274d163454b62a2213fff3e8f4a

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 65c9069e18774f30de7c7603ff910875f6cd00fd43433c28326ad3b026bed52d
MD5 226ca0c4ba7ac2ab82f111bb202cb224
BLAKE2b-256 22cd1897c3a93d52a1e5f36fb2e7a278af76be57c15859dcf9721ff8eccc1f66

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1f74a82898510c8b015454aca672e60494fc1c800ec339a0030be26a1bac7d85
MD5 ef5c25148b904b07e3a24a884028cda5
BLAKE2b-256 04f676c7ed99a3f5e6342c1e3f2058fb2e89e96053d70b8fe55f1338e5812a65

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c7db0807daa5a6ddc909071eb46dff733689b00daab99cc50f5313cb31a07076
MD5 fa8eaa820644303afaaadf1a0e7872f6
BLAKE2b-256 a18c5d6d32279b8d1f60a188c07440024e97c19b787dfe989b9cbadc1ab748ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page