Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status AppVeyor Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation.

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

swiglpk-1.4.0b.win-amd64-py3.6.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.0b.win-amd64-py3.5.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.0b.win-amd64-py3.4.exe (736.6 kB view details)

Uploaded Source

swiglpk-1.4.0b.win-amd64-py3.3.exe (736.7 kB view details)

Uploaded Source

swiglpk-1.4.0b.win-amd64-py2.7.exe (738.7 kB view details)

Uploaded Source

swiglpk-1.4.0b.win32-py3.6.exe (908.3 kB view details)

Uploaded Source

swiglpk-1.4.0b.win32-py3.5.exe (908.3 kB view details)

Uploaded Source

swiglpk-1.4.0b.win32-py3.4.exe (632.9 kB view details)

Uploaded Source

swiglpk-1.4.0b.win32-py3.3.exe (632.9 kB view details)

Uploaded Source

swiglpk-1.4.0b.win32-py2.7.exe (632.0 kB view details)

Uploaded Source

swiglpk-1.4.0b0-cp36-cp36m-win_amd64.whl (529.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-1.4.0b0-cp36-cp36m-win32.whl (445.9 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-1.4.0b0-cp36-cp36m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.0b0-cp36-cp36m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.0b0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (811.9 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.0b0-cp35-cp35m-win_amd64.whl (529.9 kB view details)

Uploaded CPython 3.5m Windows x86-64

swiglpk-1.4.0b0-cp35-cp35m-win32.whl (445.8 kB view details)

Uploaded CPython 3.5m Windows x86

swiglpk-1.4.0b0-cp35-cp35m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.0b0-cp35-cp35m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.0b0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (811.9 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.0b0-cp34-cp34m-win_amd64.whl (512.3 kB view details)

Uploaded CPython 3.4m Windows x86-64

swiglpk-1.4.0b0-cp34-cp34m-win32.whl (439.7 kB view details)

Uploaded CPython 3.4m Windows x86

swiglpk-1.4.0b0-cp34-cp34m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.0b0-cp34-cp34m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.0b0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (811.9 kB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.0b0-cp33-cp33m-win_amd64.whl (512.3 kB view details)

Uploaded CPython 3.3m Windows x86-64

swiglpk-1.4.0b0-cp33-cp33m-win32.whl (439.8 kB view details)

Uploaded CPython 3.3m Windows x86

swiglpk-1.4.0b0-cp27-cp27mu-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.0b0-cp27-cp27mu-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.0b0-cp27-cp27m-win_amd64.whl (512.9 kB view details)

Uploaded CPython 2.7m Windows x86-64

swiglpk-1.4.0b0-cp27-cp27m-win32.whl (433.8 kB view details)

Uploaded CPython 2.7m Windows x86

swiglpk-1.4.0b0-cp27-cp27m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.0b0-cp27-cp27m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.0b0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (815.0 kB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file swiglpk-1.4.0b.win-amd64-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win-amd64-py3.6.exe
Algorithm Hash digest
SHA256 4da82d05ba4fd163b755a5816abff8081de6e2fa895f8ef3fe9199c43539a757
MD5 14303cdeb5543720940cf3ab37221a8f
BLAKE2b-256 3b22dee74bddc384e55916484ceb1337f803553f09f4aeb13b3328b2ffdc32c5

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 671972df76025ee073f364407cc0af8fbb98d1422226235225c2172da814f1e2
MD5 eae238aac17b2fe83f1b90428e06c9cd
BLAKE2b-256 88c8fd276a1dfbee541ba11b04062443c44f053337a87fae46c13738de31dc5d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 020371d029370a46b0a22c5afd9ec9a768dc50af60842397a2e7fb3a673f12dd
MD5 7dd62302f38af509e5a5394a2087505a
BLAKE2b-256 6bbd83ebcd0263fde4e9e92225ecfaa5bcc5b93c65263a7049b37f938e2cb4af

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 a7f9bbe59bf27ce5f659ff46dde9818c55d7c8333c7dd1591af94c2308020c69
MD5 02d3d53e62cc8584cfdba90ce1f606d0
BLAKE2b-256 67cded1374785435262805c3726f3633b9b172328a64a6163e45ac2bbd468804

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 0a10f5a87759ae4c947b714b9b71640b8e6bd57c17f5922863dad21212cedf6e
MD5 773bd13c994cf208dd02e59259b35d5e
BLAKE2b-256 5b992c5881d0d5aaa7c35abb9f4b4cda21fefec3592b9ad7aaca1157e432db6b

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win32-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win32-py3.6.exe
Algorithm Hash digest
SHA256 d33b41a3a81f938c669c91e9e45075f310fd5c5b59255065ef4c84187cd91db1
MD5 d366dba18111c38b9602df3bf9f3f59e
BLAKE2b-256 adadce9e12ed3d6c161fff3a31b8c6869032dd160bce375c302eabe966ac2141

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win32-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win32-py3.5.exe
Algorithm Hash digest
SHA256 fe2399e66a6a82475469f9e2a3928ee1a18b558fa2b82d4eb010641ad620ab29
MD5 19ca6263606cf114d44cf08b5a341042
BLAKE2b-256 2f8b0e5bb8fd196034c8d19c840ecb7dd2c8eb1ef32331ffb3faae1251a31e34

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win32-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win32-py3.4.exe
Algorithm Hash digest
SHA256 9f02b1aadbe9211aa9b2cc06c81909bc5f8a9322d9952e75b1a0006a68f65036
MD5 22937deaee1190e05fe73b6364dd9d17
BLAKE2b-256 a16f317c57863930bfaf922438f6290c30e3717f38eb75519366cee75040385a

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win32-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win32-py3.3.exe
Algorithm Hash digest
SHA256 c8cba712470ad9a4938a88a5f83df45adfc220c4de528107001cd972cb92b36c
MD5 1ea0ee2736a6d4580a039d82193622ac
BLAKE2b-256 f7b4e46a3b0626f2326be303d315cc3db51c6dc3587ea0a38423e25e4d15b6c4

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b.win32-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.0b.win32-py2.7.exe
Algorithm Hash digest
SHA256 befb46a56c4ebd58e4aec92d4c082f6e88630473e57dc3ae27ce126580084455
MD5 0c5e6b976800389f9b5ad36b798a739d
BLAKE2b-256 be8b948040b823e4449fb2e603e0a3bd386a958f193dc9bfce9dfa51f39c8d77

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eebac20172ae0abffb314ccc00ecfa8c08a499fb8eac364cc4d188cb4ac16c6e
MD5 e260eb5841dadd5cdeb07485c8f94718
BLAKE2b-256 46198da7d1817f19f65fb7fb8c199fa44bc4974584da1becc228235b0eb6786d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 78453748df0c849c946697694831e2a73b764e36faba064cfcca5a452eaf2aa3
MD5 fdec5c265e4dbef4deda1b3998d894cf
BLAKE2b-256 1865eb3ef38bb3fd42bfa5eafaef0fd1fb12dd5369c140c03ce51eb42f91bd0a

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3c8bd449f58cb920ac80f77418cbe5583743bea1c52e9f473f3bbdaab5df65f6
MD5 d1dd9338c0d92d475a3cf3b1e21a01dc
BLAKE2b-256 34e22a916d5bdf68a83c482e024ac581aac503c646d3b67e5589b0a5e23f12b6

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3cabd38ef0bc73e52ed643dc21e0e345944214454bbaa4873784b0b88a76fe92
MD5 b771a9f19cd9440d4f6f8354dd5bf99c
BLAKE2b-256 16e90ee5c43e5f90ee6872aba467f4a9a1929ccbf17a1bfb8c2bbac05ab3dd4b

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5dbc2ed80a48a69f748950f10a8e1e41b54b1d8ed58ab694f87f84fa6370075f
MD5 17d6516d9ffafc9c0ba105643dce3082
BLAKE2b-256 ee4aec7cfcec3994589858b6d49761623f3a05256e90968b016feb12452f179e

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 133812680b85c9db7647f5459f14b11865dce536c918a706836fc7a6bf7b2352
MD5 6f3ba910abd683a0563b78b1eade68a6
BLAKE2b-256 a0c94b8dc980dc97d87184710e40db42f07038fc60134cbbd8d8f4c8730ecf14

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 b40458479589f59fb1db9fd21595d1f73342da790f27f8ea3fe4b943b888ba43
MD5 a378925e935260b393ace46afb1c0c7b
BLAKE2b-256 b3a0d590f27e96a8464150967f5b0209d7a6aa1c96199e1637df929ceee7b098

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fedb0f5403b3cf910195de80308133ecb410cdfca6d2ca683b56f94392501860
MD5 1726e1ef3f67a94e33711b5a459b844c
BLAKE2b-256 89f96330692f4d306b4ea16df7f8db519efee8bda0699f16eed25ca760cf3cc0

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cf2391366ba78d89efbddec51c307f2cfc0ca291381c6eee318cb9485f6cfa04
MD5 dfc07c1dfadbb8e3d364e4e76b0c413f
BLAKE2b-256 b1952c0cf4d92d0fbf1c1275dfc52c3c01040e8741e866bcfaad3b9fb1b3bb7d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 20bd910ee6e6f54545cd8bc004f6c87a25771286a3a1c8f2e17f6e4ccc95f3ff
MD5 9acf194f24e3bada83c6517674e4fb54
BLAKE2b-256 79aa4d763a5b446029789e1e4c13f2debe473f42e052e35008799d048443f8dc

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 b6fe14166a6b9362eba2768bab10bcecd2c0cb9b7c6305c5d6e0749c72880a02
MD5 e9fb440d5bb8d60e8472331fa44f87b1
BLAKE2b-256 fc662aa03858fed17810e9049f54626d51455ff72af619b233cf59541138c7b9

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 6720820e455faac6154a63f1de955b71d474f145428c07bf341aada46da669ed
MD5 bfb2ac34c470a9ece43dec606fa2eab9
BLAKE2b-256 3f4f3cd1528af5a379f8830f5a8dc7e85b932c09854fdcbc63274464903158c2

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5b95f7625bb8463940810f2c9f7e21da6fabd783239e41e0378779f97d768173
MD5 3c7ffb10dab1481637e7707048de154b
BLAKE2b-256 256e480a58b98185f3775ab20f8546281fa78477a5e558d803c70743ade3605a

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 738111317eb582c255f7da11615079ea83b02f0b8a37992dddab97d2322d26ab
MD5 35042643c2a51dcaf158eb72560806e2
BLAKE2b-256 a4821ab9ca8ed8a521378b045137684a2c6a0903c236187f0bbbb3cfb704a789

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 86bb8b7f38b97d809579fb2c644892be773f8977d02864ed4a4fd4c6f94fc191
MD5 a3e86de85e0ba19b923af82d7bcd2e9a
BLAKE2b-256 9cc455ed33cc7d892323bde60e3e7295ae89290284e2af4a543524d360815f08

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 a2ba19aa5b985481ebe47f76a358f6d484d0608309fb3f85c8b697bc8b364429
MD5 fa60a23caaf4abb84d7623fb8190c1b3
BLAKE2b-256 24fd908c375b1251ff3bd213715497aa3ca2d69c45066951c1287086321d2b1d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 761426eca755d959fcee7b5c2e7d769437b3d6d4262a05204f1d85e8aaffb4a8
MD5 ac28b7044c7742e6e85c4f7465b67cde
BLAKE2b-256 5dce26245f71a224f2f99be41a5c266c2d6d4f650ca16d7442bd6e6a4c5e77b0

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6f95670b5e1bcc0ccff50711671ee72dca18cf3a945a54e365232f7a59ca8970
MD5 65c03fdac0fbc34b5295baf607d63147
BLAKE2b-256 95e2ce91529149ed8f685405d8b5b1fbd9af56645cfcc884c939cab99e45e63b

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4c0d9ea93337dfc9265a8b355f4f8284789ea2d81a03e0887a911add028f0fb5
MD5 d7e3a0d78611a569cf313333bdb24588
BLAKE2b-256 8fd01fe26ef7fae50ceef81081346abee30596b5886717fd03cb5f667355d557

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 148b63bf70f590f5b22305b2ac6c31c5fa50a9a47e829ab28539ae6fc0c9fcc0
MD5 bd3402cefc8433d19e168cdd87a6e356
BLAKE2b-256 7bf19919b41d5f9142667434bec8d0b05866153e5b2de950749283333a377b1d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 d36a9df16e213e1ae2c5b5d32b5a3d20f7fafe9e1be40c7e6fe3a1abf65b4c9d
MD5 5c78f3fc2dd81f17c00c6a65b8f6755a
BLAKE2b-256 2fa2f2d95a7c01f280fdb22388cdc6f16da51b6651308f081ada4b0ea41593f0

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82a541c5ce2ab7cb6517a8cabcf94e5c8a67729c165eb082ca0a60d92dc1220a
MD5 2d5f9e8b7d929d2f52b34af49fabbffd
BLAKE2b-256 e01aeb243022c0380a6529ecffbc10d22354d5c3dda6d642e9bcd185ab45929d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5cf049cd711bfd0d881f66772d0341fafa8b69772839befc567a7b4bd8197329
MD5 633efe2693fcdda594bd740645f9b524
BLAKE2b-256 c0ecc0c71d6484d94b826d7c84659a7d5573748c7d47027bb8075ca3970b9cdf

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.0b0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.0b0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f3d3605790cf532693a4b8593e661a9a1e9c58f8e3c34571db54afcff5e5d5a3
MD5 63fa9f40511aeb9784610e1859f78abc
BLAKE2b-256 4a8698f4e3e5b23115729f4f3722176f55858dbf1a0a8856b3c5bb81006b46d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page