Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status AppVeyor Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation.

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

swiglpk-1.4.1.win-amd64-py3.6.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.1.win-amd64-py3.5.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.1.win-amd64-py3.4.exe (738.1 kB view details)

Uploaded Source

swiglpk-1.4.1.win-amd64-py3.3.exe (738.2 kB view details)

Uploaded Source

swiglpk-1.4.1.win-amd64-py2.7.exe (740.0 kB view details)

Uploaded Source

swiglpk-1.4.1.win32-py3.6.exe (909.0 kB view details)

Uploaded Source

swiglpk-1.4.1.win32-py3.5.exe (909.0 kB view details)

Uploaded Source

swiglpk-1.4.1.win32-py3.4.exe (633.6 kB view details)

Uploaded Source

swiglpk-1.4.1.win32-py3.3.exe (633.6 kB view details)

Uploaded Source

swiglpk-1.4.1.win32-py2.7.exe (632.8 kB view details)

Uploaded Source

swiglpk-1.4.1-cp36-cp36m-win_amd64.whl (531.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-1.4.1-cp36-cp36m-win32.whl (446.6 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.1-cp36-cp36m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.1-cp35-cp35m-win_amd64.whl (531.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

swiglpk-1.4.1-cp35-cp35m-win32.whl (446.6 kB view details)

Uploaded CPython 3.5m Windows x86

swiglpk-1.4.1-cp35-cp35m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.1-cp35-cp35m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.1-cp34-cp34m-win_amd64.whl (513.8 kB view details)

Uploaded CPython 3.4m Windows x86-64

swiglpk-1.4.1-cp34-cp34m-win32.whl (440.5 kB view details)

Uploaded CPython 3.4m Windows x86

swiglpk-1.4.1-cp34-cp34m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.1-cp34-cp34m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.1-cp33-cp33m-win_amd64.whl (513.8 kB view details)

Uploaded CPython 3.3m Windows x86-64

swiglpk-1.4.1-cp33-cp33m-win32.whl (440.5 kB view details)

Uploaded CPython 3.3m Windows x86

swiglpk-1.4.1-cp27-cp27mu-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.1-cp27-cp27mu-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.1-cp27-cp27m-win_amd64.whl (514.1 kB view details)

Uploaded CPython 2.7m Windows x86-64

swiglpk-1.4.1-cp27-cp27m-win32.whl (434.6 kB view details)

Uploaded CPython 2.7m Windows x86

swiglpk-1.4.1-cp27-cp27m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.1-cp27-cp27m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file swiglpk-1.4.1.win-amd64-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win-amd64-py3.6.exe
Algorithm Hash digest
SHA256 d386111c5271cbf9af3729958c3b88c9d1b38e8ac5a1a15dd9534bcc18b38380
MD5 c523263a00e94c3e4e4b3035aa91a9ec
BLAKE2b-256 a15fbd0aec73f03068a7b5380539ee34979a83f1946a5b4a463f2aca8f137861

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 16bbde1ee6187eb57cfc91b87de8afd612f9138d3c22db101b3a6927b49b95ca
MD5 b2101d7eceab600739a134b29b05865b
BLAKE2b-256 83bbec143d8ae8a560bb6bd47216066a87b3e341eefc79c9ff859b55c4d11da8

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 c8946fc7389892c1add864d15f27cd87d0ac6d5317804571da61f7e84bc37d9e
MD5 1f7bda95889d0e9a9c165ce39a39973f
BLAKE2b-256 f484a4a8b991989924b2dd9fa5f25046a1b3f9c2b638cc7cbf2bf788b70a173f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 e2166f2588c3e0c4871b755865885d20be50b4973f9b375579615681424f7888
MD5 e39f7b495adb30cc294ef852c701bdfc
BLAKE2b-256 f725e915368a9d33bd7a2c6ead2cdf8d06babbf93bd8901461268b15c6750ea0

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 918630abc44978231ced2098d368f3ecaffbfbe7c21cd38da9b25605b0fac4f5
MD5 e97631c32f0d98db79920c201209281f
BLAKE2b-256 528721a9b0eed6e5b28c69ccca1780361293df6bc44f5b21599c6441975f4b92

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win32-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win32-py3.6.exe
Algorithm Hash digest
SHA256 1dbae157967c8afce0a95b70276df9ae82fcdff41ab186c33f36ef15c5eb8086
MD5 d88ede127fa69270d116b70b0b0b3b0e
BLAKE2b-256 c79119f195bea96e2c1285fb24845f930ad0fc4d305268a7a106bc8c7bd8ebc8

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win32-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win32-py3.5.exe
Algorithm Hash digest
SHA256 6d54dd4be853eaf8d5b31a6bf57907546b580095fb9823c7ca7403a9e3bf28a5
MD5 d33bbb5af841ffc9e96df8d5a3e9da65
BLAKE2b-256 48fd81b302a08d52b8ae98f9b745baed95ede98fc2a32d7922dc8307c59c7c80

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win32-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win32-py3.4.exe
Algorithm Hash digest
SHA256 652ce2573533dbfc9d275ef411fd7f23fdb339eb1232654754ede0e452ab9c2c
MD5 cbd0a6384c50db98eb5afe3f56fc0561
BLAKE2b-256 6038af611a3cea2b6271538f6e6cb71346ecb4a38a7c1d60f734810d92df4a1e

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win32-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win32-py3.3.exe
Algorithm Hash digest
SHA256 3333caa4040c768f36b1229c87c7dc60bf450b9984b2a5e77fb4da93c9655802
MD5 cee11e57c51a327dedd802519eb5e04f
BLAKE2b-256 55a07bf9789d0e3a49b3771318d2e4c4befedf9878345060f49decacfaa584db

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 ff4288fa20f6d04e01a5651e4e7c6a6dc53fa725ad9ed29979553a7d3fac3831
MD5 52d2843247678f1a7944077b15f88d66
BLAKE2b-256 558732a0d4e8a61c4b43b70188d6d99f5dad8c69466846b44b81d39571057ae5

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c328e1fb9f501f1f84e5087a13dcfdc0eaa39ddddc1aa35e952da133ed2c5843
MD5 21e9afb2bc454ff00afb49e6d1166d1b
BLAKE2b-256 8d4a660386705201a303868702d1acb347ae2b58c20b2bc6db88861180dad7af

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 cfe225c177b3c3adfb7ac2a17acbe5a23eadb208b7ec7e57cb96843648fe575e
MD5 9b9e4ce9d145f118d3e16cebf23ecd6f
BLAKE2b-256 317b7277cee3c977325b6badb59cdca1b0b5c0eb183e82d1a440ac17bd8bc908

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dceac93e9af7c169eac4d6d09c256992ba193ad82a9147b3caa053463d9101f3
MD5 1e43df4d71176040b68427d6f4a3951b
BLAKE2b-256 fbe84fee19ce0444253956cd89033a34c093c79e8a4d8aad7f1552302694aa3b

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7b17d2b33c77d3cdcfbce222c3f8ed4ff173b0d1c692ca6c23d3abab0acff627
MD5 15320f7ff15469aebb0b6078023fa0e8
BLAKE2b-256 5bed95b16306309829d65f25e8fc1d5374a1f6fdd036596581083b00790a036d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f226a79ea801be7a9bfad420bb6e02dce62017bc1d055b1f3bbae2935a6e3175
MD5 298dfad2887b12ada333af9c20b26f19
BLAKE2b-256 2742c0af713c3a41341675512902829f3fb244d97da1969ddf28f63835507068

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 aec5a175a4e0627a512f7781f3e8c4e4d6174149ef9827706e7f31f64bea513a
MD5 e8d4f8dfa74ba44305c089b77ca3e7b9
BLAKE2b-256 58876af9b982da9b7c3175b9cff29dd0fcc6deb4cdf4ea0c785d918bbfb49079

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 59c0c2afc27996449132d82386d23640f3dc9a87ddd1c169dda9af318fb1e1b2
MD5 bcefa49c88b15940629fb2b829eb3517
BLAKE2b-256 cef4a05a1282ca7609643b8bc02507994dc9db2423f2e3e9c8ff530eef4cff6b

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 71bd3aa78e4afd86dbe73902a5cc4cb23f2ecf3c92576310a14e11af20aba062
MD5 aed2c9396f31e81d367c2902077f3123
BLAKE2b-256 6ca4ec60629d8f08cbe2f3869ec64a7f9891c3d8c96fc4e39d475bec881d5b3c

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 74e8edb694d8583e598f1d2434f0886474a02c7c4c1a57e79b83d25a5e4b4988
MD5 3a4fd35206eb1c5a4f0c4a9c7ee9b7cf
BLAKE2b-256 a5992cb9aa45ea05ed08d3f6ce27d2d574cbf7c9d5ea1bbd6c85a0301425228f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 301b0414147c056e44e6c20f3d04d1f50c7ff34e4ed4f026f446640e0f5006fb
MD5 3b32f0bb0dff0a5d7b96997403d93fb4
BLAKE2b-256 32e9f714e82613e4a3088a05491220386212988a9acbd8aa8a62c4d1d72d8218

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 42e82afecfffba1ecf4604e1bbae113d9da03874297323b285d3fdd85cbb0617
MD5 60a54eb18f550cda3998dac336c6f719
BLAKE2b-256 0c7601041360494e3c6ef3c4f1415500bbfc25f722edb5036b11795ff5965ee3

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 08ac14c3740498c719d91a3927934984dc9e2441bb426b9d94d5a34f8c46d5a1
MD5 c6ef5374e2a10cbab5381decb482905f
BLAKE2b-256 06bc8a3229dd6d8dafae707269d317624ec724b91f440027ca94578288a4b92c

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5a256e8c6fd84d5606e036d8f9072dcb7f78629038123e8e5046fe0469e01963
MD5 0c7d2164118e9a92de91105b9da964ba
BLAKE2b-256 ff612717d5d6f69d9998a27a8922950e6f15baec1582014b371360643ba4fb84

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e913b4ffebca15a672ca6e72ced252a01a28178ee4c3204144509b11914b68a4
MD5 f64151b5cb1056265f5ff51fff71f2fe
BLAKE2b-256 bed56dff9beb788916a72c49a83361e6005ea34937045545a7d74872f6c89f65

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8c2e21e6db75e64e50bba820129043cba8077c524b4610f4b484d7e73f6d122f
MD5 1af8da64832a7bae83046be5483b7629
BLAKE2b-256 471076a76cb005f68876e5d07e2a8f4fd24828e6001c47d5de116c3b7c0513e3

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 2747808535ae0ddb382c0984bdb7a9cd2e54f871bfcc9b551679b983a121bc54
MD5 10600cfb6dc4bb4a248e0d3255dce635
BLAKE2b-256 e27ea1fb1585332461a330782621d51c71a9bc244caf3ad58bc7a79433d47a0c

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 c381c13fbfa67e720c3c0be4e65aee232c5c42db72077eebdfb90dabea5a8832
MD5 6b6fa440f593c6505de017033060d0f0
BLAKE2b-256 ba7a40ebbda3ba8c3f2db8e2f9d8453c597ee0cf696845928cf2c1ce236fb153

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2a2bce2ab134b418a65f2fe7a078d4b162dc15237d9aae858ec673e5133c16fd
MD5 b68c5d546a049cb994d4708265dfd7bb
BLAKE2b-256 2ef9418381ebe058c5da549e54f6888de32f9c936af6df83a0a011a0755cd732

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7b39e888d22d7c01be7b11356537cdf7257e3239dacc909814e790247f6714d0
MD5 e6a34a6b8ceb496bc4b9c2b001f03b91
BLAKE2b-256 1addfd6872c6375063e0da4e9595b5dc21cb17d47b66a05f2f952911db6c9126

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 61bbe5353bc734313ef3b2c9e7b747c4a364fc667f959ba77780ad771fb87f4e
MD5 e8f20b8d63de520191f0bdc7571b8c2b
BLAKE2b-256 eec032b6a4b10ece889b66b6c1c1a71c5be31eac5517ed8029023007ae6e48ad

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 a0d83c56ee8be94beb1e41fb5c91c07e11f52df41015b9f957f0175457b0382e
MD5 45995954796efafee07d35e8676d9f9a
BLAKE2b-256 92b1c0dd43e76731cc93da53975a0f388fac8cab5db43009004768cb94f43fe9

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f882644cf97f915805d5b482ef98e1f6951ce8239fa21ea0d4a373336f62b66e
MD5 30e9630de73707f33a5e784f198f8dfa
BLAKE2b-256 abfd2d263704f747d6d16be9a85b197d31cb8b28350273f8a304a26a2ca4cfc1

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5dc4bdb56ba8faced60a40b2f0ca3c49509c174501937ce04b5eab0f03eaae5b
MD5 ad19695c62843f20d974a374ca844781
BLAKE2b-256 2a730adb99cedacbfb990a766b4e46aefc6edf20979eafef30d6c817230fe29c

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d161ae3af6ffd1f9775e4511b8c2ef05e6bd902b6c0972cdab14153a5abde33e
MD5 7bfc837b116b1287ef706af7464a28e9
BLAKE2b-256 dd2006789fa46329a94491c95ad638631b28364206ada5ab63c5deed8a4c8bf9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page