Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status AppVeyor Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation.

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

swiglpk-1.4.1b2.win-amd64-py3.6.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.1b2.win-amd64-py3.5.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.1b2.win-amd64-py3.4.exe (738.2 kB view details)

Uploaded Source

swiglpk-1.4.1b2.win-amd64-py3.3.exe (738.2 kB view details)

Uploaded Source

swiglpk-1.4.1b2.win-amd64-py2.7.exe (740.0 kB view details)

Uploaded Source

swiglpk-1.4.1b2.win32-py3.6.exe (909.0 kB view details)

Uploaded Source

swiglpk-1.4.1b2.win32-py3.5.exe (909.1 kB view details)

Uploaded Source

swiglpk-1.4.1b2.win32-py3.4.exe (633.6 kB view details)

Uploaded Source

swiglpk-1.4.1b2.win32-py3.3.exe (633.6 kB view details)

Uploaded Source

swiglpk-1.4.1b2.win32-py2.7.exe (632.8 kB view details)

Uploaded Source

swiglpk-1.4.1b2-cp36-cp36m-win_amd64.whl (531.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-1.4.1b2-cp36-cp36m-win32.whl (446.6 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-1.4.1b2-cp36-cp36m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.1b2-cp36-cp36m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.1b2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.1b2-cp35-cp35m-win_amd64.whl (531.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

swiglpk-1.4.1b2-cp35-cp35m-win32.whl (446.6 kB view details)

Uploaded CPython 3.5m Windows x86

swiglpk-1.4.1b2-cp35-cp35m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.1b2-cp35-cp35m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.1b2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.1b2-cp34-cp34m-win_amd64.whl (513.8 kB view details)

Uploaded CPython 3.4m Windows x86-64

swiglpk-1.4.1b2-cp34-cp34m-win32.whl (440.5 kB view details)

Uploaded CPython 3.4m Windows x86

swiglpk-1.4.1b2-cp34-cp34m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.1b2-cp34-cp34m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.1b2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.1b2-cp33-cp33m-win_amd64.whl (513.8 kB view details)

Uploaded CPython 3.3m Windows x86-64

swiglpk-1.4.1b2-cp33-cp33m-win32.whl (440.5 kB view details)

Uploaded CPython 3.3m Windows x86

swiglpk-1.4.1b2-cp27-cp27mu-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.1b2-cp27-cp27mu-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.1b2-cp27-cp27m-win_amd64.whl (514.2 kB view details)

Uploaded CPython 2.7m Windows x86-64

swiglpk-1.4.1b2-cp27-cp27m-win32.whl (434.6 kB view details)

Uploaded CPython 2.7m Windows x86

swiglpk-1.4.1b2-cp27-cp27m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.1b2-cp27-cp27m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.1b2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file swiglpk-1.4.1b2.win-amd64-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win-amd64-py3.6.exe
Algorithm Hash digest
SHA256 c2ff63c240eaa7bca636332cf1575146f4e90b68e44f8cf05c7debffedfae171
MD5 61ef57e93ab44d466fafe6d63d60b9a0
BLAKE2b-256 327c89e1f9bc1def1acf054cf9225785fde2978562c0cfbb731471e5af58ecb4

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 2d9b69f99fe53c8f15c7b5c46e31a568c752073969a75b64f8faba925d9dfc92
MD5 639b8777a9a08ab9f3f8228fdb30952b
BLAKE2b-256 4741fb814519e4bbc0ad7d7bad9b2fa15a50f037c826306f635bf95021386f2e

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 89187ed2a9170632d5f2482bf0111dfc3c9f80c54deb5eeef43c1376281533f5
MD5 8988d396d6acf6f72df91eeca615abc6
BLAKE2b-256 425cea12a6db82ea57a83e1b839cf029f8456f4ff002683b69ba2ec434f57711

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 5c798e4cb6deff792633121a771ad68366e3ef9fef1682033022be87155f5f93
MD5 d7fde0229b375c6107c8aaf208a8c5fb
BLAKE2b-256 44a1d92ff2bbc04ab8695aff26d302ac67aa856dd5bef5c6ba5a40f24fe6c391

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 2fc1fc08242c02169a53c48353df1fce5e11355864c1a96be431ea19f66a5808
MD5 21fe86df28f73285ce14bae7c2b734ac
BLAKE2b-256 141b73b82c9225e03dbfe91d73980ae003f1844e9bbb6331ba431012deed2ee5

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win32-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win32-py3.6.exe
Algorithm Hash digest
SHA256 8855a3425ef85376f4128567571d6e685eec5890ef5b455cf7cfa6c867915222
MD5 b6e0e1a5fd1b57d66fd1c1948cdc2005
BLAKE2b-256 94f037cb51339616fa2f9424cab02b99a58b0fa0e97be7c57d8b3f9ce5bbc1d4

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win32-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win32-py3.5.exe
Algorithm Hash digest
SHA256 f43a00a318220849a0364604573f9cc5ec3bf3a2be31985acb068c634ee7b94e
MD5 67da1a8189ae90cce051af2d5ba9d58e
BLAKE2b-256 80c40c0d159c14c54bfcfa7607b4312386de64d722bf7485bf323ffa5fe4b561

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win32-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win32-py3.4.exe
Algorithm Hash digest
SHA256 6ce55c55a3261f87083ce540ef70a82ab5df3415dc9d13565f77638aa811f0fe
MD5 5271a92eb85a47da3aae2d446d9b9e8b
BLAKE2b-256 74f49c1ae380471e1c77bf456decefd889513edee4ef8fc4d6f2c9f54a1d33ad

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win32-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win32-py3.3.exe
Algorithm Hash digest
SHA256 6e1f073a829fef79af29254f0d1a16995feb0851f2d0b93345ca33afb7521b4a
MD5 a02e3f6cd74e8f40ce8bc498d395aa40
BLAKE2b-256 6187d05ab7b90e20ba073aaaa3c217e4f463429d0f2cffc5533d800071072a70

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2.win32-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2.win32-py2.7.exe
Algorithm Hash digest
SHA256 fe1f075b7bfa8b8aa9ca017dd3db9991cba844d2035dd87c5fc4d9c62ca65ca8
MD5 73499427639f8d23aebdb64dbff4c553
BLAKE2b-256 b10c5ae3b00ee9315c633f3f3b061ba2991a640dda58f78919dedfc0d150c3a2

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4e466e977ae8739eac75d93e8ecdbc62291869062bb7f52d75fb9cf1d798c232
MD5 f6adeef6a776cf2c86ee406b1e2601e9
BLAKE2b-256 c25802e2127d8cdd0c1278105f16dfbabd23293ba9dda683a5ff25bf354288db

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 15d0ccb242734150665256dfc0cbd2facb39f9bce4c819817653f935b0688c6c
MD5 91d1823535b7074334923cb2dabbb2b6
BLAKE2b-256 594c3b1a85dc20b026717252368b6f24ca4515035d58d58c07cb5edfd328c790

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7a4ecf620593b4321317defb229fe92f82ae191e85c9341c61aa141e6b17d7a2
MD5 946a1460b1f10ee928aad5d503790e9b
BLAKE2b-256 eda51f9b08817131832c414b8ee4f96d6a18ba5f948285b9c4ea2b012dcf6dd9

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0c2825bdc56c5e43d6236d0bc8dad1b12a6cf800c8fff5874f8932d5ce285dfd
MD5 166a107f6571a55fdc9b59b86a87f3f3
BLAKE2b-256 b7a485ca404df65932012d981140501277842470fca20466fd9ad036a23d2d4f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c7e5e60e25e862bdbc9d14816aa9853cc55cdbbca38784613b4a11d1a9c8099c
MD5 b76695216b041115acc7454c77966cfd
BLAKE2b-256 ca961e14e1ae146667d76738961c840f2bc9e5787f3dc3426e695e0c8fadd512

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 ad9866e653781c993fbc356b0eab7d6b787c90e9d255e1fdb6895b9c3b8cd2ca
MD5 22b502c2c58fa2af155f69e9a50deb32
BLAKE2b-256 6f101a31ee827f5daa05dc3d7b580718933573f06285f782bf578d2a1f5c7a02

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 10e66860eead1e65520689b462b4e9bf69e59c65eeb19e21848598ce103e2b73
MD5 a8675defa4541b545180f30fb261c5df
BLAKE2b-256 9c3b85f6aa456ce1a128548bfd5203aaa9f005363702bb05a1d576deb471cb76

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b25f8af4a8a3f3c63766bfbdf95a3c6d41537b9e20e64fab20fcdfb946e4564c
MD5 b916cbb652aedecfa78135e7d5444d9d
BLAKE2b-256 b482dac358cb290b5832bd25def0f4ea7ab2c27d62ea706cab86b7d701e5e49f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 918aa26d46fe85d64420439a8d5429669bcdc7b015ebe2a71944b9a9213215f5
MD5 cc8b07e856c82ea97422b3fce51b55ba
BLAKE2b-256 d6a9d2daa3e608cf1d31a8485501ef38dcaba8bfb9bec2ec5b4ca3b1362d6754

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5163450f57efed41a2930695d0f5993da5ab38842a57c5627956a391fa66ad81
MD5 51c48df507761dd8f9eb64ce27125fe6
BLAKE2b-256 145d09fb0dc52e8d933cf7cda8062999f2f5d915f1f1a56e03f001dd7d74b673

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 aeaad90f2cd48d408a6d3ce412eb86ca61f3b9eb84dd59a6927d705d2a294e3b
MD5 97e947b5412544e17c35596d1c8198a0
BLAKE2b-256 72334c0074490998121c7936ffa19d0e81fbc6a7a30b25ae2be26580934fb852

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 f7d57feda5d80710115c4e696d429b8e057198440d94ee2a5b0ae731d9cfbeff
MD5 58526cc038394790bdeb62dffc9230d1
BLAKE2b-256 73cd742800c58e3ed66978d95ab49ad395c4a59e69b86d3b82826af62cff316f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 722337bcf09c6eff1d6d69fc21fa59da06a246b827fc49bdd170d0134d463ac0
MD5 286931838cb6028aa42a9d19f4ce9ac2
BLAKE2b-256 57a8c70af7d2a6ca9aa5aac7a2bae446f43b3b0cda102bc31f06bbb0fa8e0d1f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 82e9e6ec659791d43da27a452b869878e22832d2ed6fe4331f02c98a8c137725
MD5 646bb864f96f85ad8ab13f1d0b8508e2
BLAKE2b-256 0783f0f3cd629a11cc2171c891f45c02d60ff7ccdfd2edf8d44745c0cb280c87

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e294bee5b19155f2f5c18ca5139d28f720968df482d2b20ba6a7a12ed5ef21e1
MD5 1432770c73eb66753311df49aaa770c5
BLAKE2b-256 5fabd7bcaa01cc88bb0176f1eb38dc1fbfd9a5b92ba260ca1e1f9c3ade26beb8

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 3907146fb4228be0951469c12e1d149fe44759c4cac77257a2aa513dca708b90
MD5 e87120b01afba3d76b5997ad1fd9b194
BLAKE2b-256 c6a721ba92f9627c5554d5cf74da6c72ee004530dc7e34ef96267f65a5f134db

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 95233935e698d0f6bf27b7b9797c2748cee82dd3ac62a457c0611a647d024ff4
MD5 cd3793352aea38963322f83cf45ab85f
BLAKE2b-256 c30f1b521c54c336c22ba664762e590f9297149f6fb0ca3aa5fdac2d3880a55a

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 19f79a6e68b520796993e4075dc5d68fe2632679fba071db666d4daef2a6b2c0
MD5 7741cada200589e6f22791944a088f75
BLAKE2b-256 5f5fc6114d05d05565a162c827c6b710cb2f1eaa21a4acd26df3633f6bb6ce5d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ecb898cd66480719f069ddd7e963c6c3a442fb4e7d77ccdb0babdb81bdbfc370
MD5 2022a8f77b01425a4f2aa88cb85bc23c
BLAKE2b-256 f17bb5f10625d636fa93f469339cc64c0aa69a3cec13dccb2e949a5d62a65e4a

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 57750f95ad2b9e66c175fe4895f1a00b073be2dc287659d9046c5c6a01d30b86
MD5 bbe0749ba4cdbd90bcdc6aec1170ebf6
BLAKE2b-256 c5f689de512ebd8034520f9a076bee3a8c896c3b673a092bbca41cfaac3114f9

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 930678aad2af560dca51cd2338ecf88648a36385319fd8bc03ef061d6f9ef190
MD5 290b829f2425d0e45bd8eded1de1542a
BLAKE2b-256 fd25c575cdbe565eb97d03fd10f067e2a8aee934a5c6bb5907015149fdda989d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 288c4a6ed4e4ab660fdcc0a44a254d58fc4623b7356c3e253b195c34ec077b65
MD5 de1a251e88bed5554304063a38170e74
BLAKE2b-256 dbb82d381bb0a11a368adf22d073a342dcafa64a82303ebbd24bbd16e01c2dab

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 beaf33b390c42b40d6e540f9ae7ee8c1969644b016a263eb0d51ddc37fff07e9
MD5 79a25d88f4c004081df94a8c7f4c5d1a
BLAKE2b-256 83ecdbc8ac183dda2cd0912798c7df2ce2fe8a8033a18130efed5280c76075b6

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.1b2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.1b2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 997bc61c8daaa462183bb500d3436cf171f34ba2f06847484f108da3f3d3094d
MD5 306ea798b3098f2ebd799c7437cb9f0a
BLAKE2b-256 1601239002897a56be1269b18af076526ebedbdf4d0bcb678976e9e69f5de5bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page