Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status AppVeyor Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation.

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

swiglpk-1.4.3.win-amd64-py3.6.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.3.win-amd64-py3.5.exe (1.1 MB view details)

Uploaded Source

swiglpk-1.4.3.win-amd64-py3.4.exe (733.3 kB view details)

Uploaded Source

swiglpk-1.4.3.win-amd64-py3.3.exe (733.4 kB view details)

Uploaded Source

swiglpk-1.4.3.win-amd64-py2.7.exe (731.1 kB view details)

Uploaded Source

swiglpk-1.4.3.win32-py3.6.exe (906.9 kB view details)

Uploaded Source

swiglpk-1.4.3.win32-py3.5.exe (904.8 kB view details)

Uploaded Source

swiglpk-1.4.3.win32-py3.4.exe (630.0 kB view details)

Uploaded Source

swiglpk-1.4.3.win32-py3.3.exe (630.0 kB view details)

Uploaded Source

swiglpk-1.4.3.win32-py2.7.exe (630.0 kB view details)

Uploaded Source

swiglpk-1.4.3-cp36-cp36m-win_amd64.whl (525.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-1.4.3-cp36-cp36m-win32.whl (444.4 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.3-cp36-cp36m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m

swiglpk-1.4.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.3-cp35-cp35m-win_amd64.whl (525.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

swiglpk-1.4.3-cp35-cp35m-win32.whl (444.4 kB view details)

Uploaded CPython 3.5m Windows x86

swiglpk-1.4.3-cp35-cp35m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.3-cp35-cp35m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m

swiglpk-1.4.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.3-cp34-cp34m-win_amd64.whl (509.0 kB view details)

Uploaded CPython 3.4m Windows x86-64

swiglpk-1.4.3-cp34-cp34m-win32.whl (436.9 kB view details)

Uploaded CPython 3.4m Windows x86

swiglpk-1.4.3-cp34-cp34m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.3-cp34-cp34m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.4m

swiglpk-1.4.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

swiglpk-1.4.3-cp33-cp33m-win_amd64.whl (509.0 kB view details)

Uploaded CPython 3.3m Windows x86-64

swiglpk-1.4.3-cp33-cp33m-win32.whl (436.9 kB view details)

Uploaded CPython 3.3m Windows x86

swiglpk-1.4.3-cp27-cp27mu-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.3-cp27-cp27mu-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7mu

swiglpk-1.4.3-cp27-cp27m-win_amd64.whl (505.2 kB view details)

Uploaded CPython 2.7m Windows x86-64

swiglpk-1.4.3-cp27-cp27m-win32.whl (431.7 kB view details)

Uploaded CPython 2.7m Windows x86

swiglpk-1.4.3-cp27-cp27m-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.3-cp27-cp27m-manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 2.7m

swiglpk-1.4.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file swiglpk-1.4.3.win-amd64-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win-amd64-py3.6.exe
Algorithm Hash digest
SHA256 aa74392b0845eac203c3b699881a9c4635990cdb887ad3c9bbbb70fca3a55d04
MD5 c203b7cdca7e19bad5e56fe40e03596b
BLAKE2b-256 2952aafe9548e428edadfc66b554672fb9e09e09de75c9601482707229167222

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 5ac20d54d663f67d26769834c57c1e65ea15a2c55d78b90fe445a60d10a4353e
MD5 fd7838497577b7511c313e447700091b
BLAKE2b-256 e3cc6f8c629daba08246308a4d5e979585f041d4805a5bd6ec2cd4ae34f32e08

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 171078f7d7bd5ee3e1969820940433357be85824a5bd53d7c96161b2637126cc
MD5 224fad066be0017b40f6dbe91b3c8be8
BLAKE2b-256 54211b6fc2f3847e1488e8427d53cc75cd8af90274ea430bddb81e354fe285ff

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 b9cc9cf0523de7f19d51768f111468ce8d26f41375fbdb3f3534c712b0cb2d5e
MD5 4c6875dd54538fcd7e8a42d6ccfb4513
BLAKE2b-256 1c77472e0105d73e175c92c04c173d0c98e1c35ab60d3dfced71e3f9dc558a65

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 ca4644ec5f5475cae0c311d45c7db5daaf21995d845de04a889285871149f494
MD5 cbf30043f0eec3705587e33395d32bc9
BLAKE2b-256 7c7a2832d83e40d69b9703a85f405cf21f0a2a00ad62195e65c5b1aededdf5c9

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win32-py3.6.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win32-py3.6.exe
Algorithm Hash digest
SHA256 fa755c469095fdd43c13e17a8d77d07b2dd9ddd4ce5e2b21f4b2949e8a6ced99
MD5 c0a71d0d0fc81f27a17cfd14af52a0bf
BLAKE2b-256 fe33155d7a3aea10e7377f56457d264b96c576688193e5ce892df68c0d141c92

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win32-py3.5.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win32-py3.5.exe
Algorithm Hash digest
SHA256 84069f4ed28fdcbeb513364d49d2b105fcb86412514c7816b55c5b1a7ea5ad01
MD5 8ab16d321b253535d3223b23c566a38e
BLAKE2b-256 644cd1749ebccf42d979306bdc59deadf8799e10e239a67ca0ba5e3546f97e3e

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win32-py3.4.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win32-py3.4.exe
Algorithm Hash digest
SHA256 dd35e1f84fca557b7398d6a521122f3e38cab9db2d83e894e9e3bff140abb1cd
MD5 9a7544c6cd08e0045b73e700018527b1
BLAKE2b-256 3c9583116ac4e6b5b360a039ff23be1808d8d7b1f20b6a47fc3519d15ed7a9e8

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win32-py3.3.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win32-py3.3.exe
Algorithm Hash digest
SHA256 704660e02e810160e71e5565e874e541dc63a6054024d7e1be912971b1b18daa
MD5 2302fe711f480a284e8f2fac3d00d0f9
BLAKE2b-256 9b02561e2c33d3be1ad8e786f7682d75111afa1ecd2bed4d53f07bdd93ffe20c

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3.win32-py2.7.exe.

File metadata

File hashes

Hashes for swiglpk-1.4.3.win32-py2.7.exe
Algorithm Hash digest
SHA256 269ec60e566e7d4c480f97021353f16dbd3425d23b6086b25b772657e22c6038
MD5 1c4b23940cbff468c3956c3201a84266
BLAKE2b-256 46d50474c3f8f1196fb4df0d64b17d67454fb60a81a827b7b77b8374e29d7919

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dc4646f5bc94bc3ab611bb402b350e66cb2d983781e609f83e3fc45636d2c158
MD5 ce29cd557d50e21c9935ffaba43727fc
BLAKE2b-256 d0e3c1d5ccf10aac6af864bd74e540ad71f3bc9e606fe6c4ed124484de6f29e7

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e9a43456d152634251a294fc41a9899c1a2f9a4a07e1a97c0907df9f87a693b8
MD5 b48d2533cf9d9b409127b4829e1ec573
BLAKE2b-256 2967020ded642bb6f69109716dedfd9773bba82f04a4797ea07656fc2969ba71

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ba2caed53e8a5074b7106b10028821d7d100dc48adc631fd9cccb876955363db
MD5 e684502a757908621b87ade752364473
BLAKE2b-256 cbdae5b66e1def97e357f0f13496b01fbbea97fc63fa69846e59fba6c563af01

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 19ce75e8f3140fe00e9e5b0fa3faa38cc7ffb59cab3012fdf84f3c73a43dd7ff
MD5 b066849c87bb6fa4431e959ff4e6e007
BLAKE2b-256 046af3f876055083ff631072c70ca56f49068b9be2f4393ada4febd2c8959361

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 00be5910bec4992d166506b05fd6d4c7fd5ef135c20742b479aa9c3fd01dabc9
MD5 c90d405ee65f56204048efdc30f5ff59
BLAKE2b-256 6c28f491b7e9db712070cce9eac3ae8dd5f49da64300c6ca0c52bdc3a1797525

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 c842ed628368e7b0b38d016c4f782f89952b3942eaeb2b4826e02c38cf5156b5
MD5 b9fb5c71b3e8482803a07969769edb2a
BLAKE2b-256 c345221dd2978fae6ac494eb9463caf02b6033e8dd810130da77c25d288f7109

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0518853225b968937316f51ea6d1948d603966464bace08d9c185e04c68b9a38
MD5 b177cb482d91d228a4694ef3028f46ad
BLAKE2b-256 ebe422672896bb5eef7c9fdbb6ed9a11ffff452d4de099cd5ea346fd22713da2

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fe9a357679885335054163e42379d9abab1ac277e43c3aaa7bdf889c82199de0
MD5 13cf8756c39f86c584ffc4fee2be4b7a
BLAKE2b-256 bdcfbd7b5dd1e510df48f6b4909f9f7c181ff19e2024b8a307179f0a80ea5dd4

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 48397ee9f604be8f6173fd83f8c14a140d89c6dcfda3ffe12070c725287ed399
MD5 2578944536d98392f160638e33b39a2b
BLAKE2b-256 3f9af8e71ab0597e44368039a8250077d3ce3653c8e8bc3816730c0fb07885fd

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b6e898a30f8984528e33a51215f7f4eced20f87f3322435c23faeabc2bac4822
MD5 0a853c6a5e61088a2a8e4026d73f8a08
BLAKE2b-256 6b3ccc38398efde48d36421e83e6585df2cab42552ae3e98097802b3b15962c8

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 bd0a3d19e66188d9d9967058b24eb4b642189187d869aa3c573e3624c452b60c
MD5 21eed7e8ecf15b440699bb893c6b102d
BLAKE2b-256 3ce0bc5b66aa3d42ed468d8f14a68de6a898737479bee52f60011d3528e3440f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 4c3477d4949b28948b2ce1f3a4510395b645f04e773c78849428e2783bcde44e
MD5 35c69177d619a7713de6a6b68c0e18e6
BLAKE2b-256 37e5dd128cd8acd4dd94c2f39ac7b6a0abc103ff1a1f0247e7be9b8980098472

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 291591a79c9081e87d5a4a103538902d703057c645f37de97056baa1f06cc380
MD5 fa966d521119125b3ff8927c96baff09
BLAKE2b-256 da851f5f76d34b73ff059c9f29145bc21e12a2c579697d3db9f6999c5f7e5423

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a6142671fb80af20e8fc648787ceb7a9fc1ef453acf07fdd4cf631c3ffdce051
MD5 a0dd6d69194b60d2c3cb1d042e7f5423
BLAKE2b-256 6670e63db2d61292a32a0c7da6747caf14509237a0cc6416520f53ece4e251b3

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1fe2a14cb0b920980df20ae5252ae10f5ef9c549fa87f0133201ba351b414923
MD5 5bbf19747e82c5d5785346504e195bd0
BLAKE2b-256 3635f2ff544ab1de8bd1f16531d4c590a38ad7360f9ec43b1599a1df101942d8

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 94fb3d92f64189cfe1ed80e6c42b744187cb912c9855f2d4650dcfa037cfd27e
MD5 d139584645417361a2ee1563b5a880f5
BLAKE2b-256 c756991725febddd7ab9e76d32fdee2d4ef643b7d241fca0b98dda50ac7fc014

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 6718e041c6b5d98725f72e0330287acb7db1bf296b68e6a92d221a3f8933f3e3
MD5 89a66165be5733fec59e37f143f85255
BLAKE2b-256 9e432c13fd15bbb9659e5b0f931192e3c1d80567233b0647bdd2f320c8461e1f

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9ddc0ba7834dbf420d481085c1a406a39a962e1889f91729da3146b9414b29d4
MD5 c5fcf349824ade78faa5c46176ed4b27
BLAKE2b-256 d448cb0a09f914884c348a54582126f76e70c1afc2af4f0ac636f917837f7f2d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ea7e080c7061cfbacf3e727170db03893b68b884408357c04f129edea819d90b
MD5 623cdfb4686862fca33ae4ae586373a4
BLAKE2b-256 d657a3c6d0b427255a05952f30a3ef980d409af49a3977382b40d807cf5cb27d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 50b51bc6092943cc4e967c1ade620ed4f16a6753ed492c0af94e9dc068ef11ed
MD5 29671fde54c88aa1dd51c4c5ec62fc52
BLAKE2b-256 e82a69331a947469949294412a4dcaba3d5bc7d9e9db041a01538ce17c9b8100

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 5293ccc164bc64be1f9645838705bc6b8a292f5ab0cc5d809ada0bbf3683e1a7
MD5 a98a79228636e3ca7f22c01b1a604c2b
BLAKE2b-256 23302134cdcf32c45842bbb26137bbc7b0db1e4860bbcd45fc02e85b38378d38

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e98576f1cecd044d4da5c9bb006b7b3679af0d1841c0e2aeff2791923ba065aa
MD5 cd2b06bd712251f86e5931e2ddf1f61f
BLAKE2b-256 0ed4b7f7cd471d5251a7955eac5a38e89db5c70d35257940b1dc92988225c51d

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0a9cdf8897e58728efd210bd53bbcf2a48fbde98a27164665f1e848b52fbfeef
MD5 2c4ad1019f3f91d1881412fbaafdabe6
BLAKE2b-256 02d566f32da063f05de528a0529c34ce4d0ecccfc02181841e3473a5985e317e

See more details on using hashes here.

File details

Details for the file swiglpk-1.4.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-1.4.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9fcae2b94e3418b13d19b921ff3e813e0adf6dd4850ecc38d1db1a452844cfe0
MD5 abb2f56c0d42eff35730a6d5c5b1942f
BLAKE2b-256 26a85c21bb1503293d772f5089b9f90f746938e1594ee0b843a47956248fed0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page