Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation. Furthermore, swiglpk provides binary wheels for all major platforms, which are always up-to-date with the most recent GLPK version (swiglpk versions follow GLPK versioning in the major and minor version digits to emphasize that).

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

swiglpk-5.0.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

swiglpk-5.0.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

swiglpk-5.0.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (945.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

swiglpk-5.0.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

swiglpk-5.0.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

swiglpk-5.0.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (855.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

swiglpk-5.0.4-cp310-cp310-win_amd64.whl (567.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

swiglpk-5.0.4-cp310-cp310-win32.whl (456.3 kB view details)

Uploaded CPython 3.10 Windows x86

swiglpk-5.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

swiglpk-5.0.4-cp310-cp310-macosx_10_9_x86_64.whl (865.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

swiglpk-5.0.4-cp39-cp39-win_amd64.whl (567.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

swiglpk-5.0.4-cp39-cp39-win32.whl (456.1 kB view details)

Uploaded CPython 3.9 Windows x86

swiglpk-5.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

swiglpk-5.0.4-cp39-cp39-macosx_10_9_x86_64.whl (865.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

swiglpk-5.0.4-cp38-cp38-win_amd64.whl (567.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

swiglpk-5.0.4-cp38-cp38-win32.whl (456.0 kB view details)

Uploaded CPython 3.8 Windows x86

swiglpk-5.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

swiglpk-5.0.4-cp38-cp38-macosx_10_9_x86_64.whl (866.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

swiglpk-5.0.4-cp37-cp37m-win_amd64.whl (566.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

swiglpk-5.0.4-cp37-cp37m-win32.whl (456.0 kB view details)

Uploaded CPython 3.7m Windows x86

swiglpk-5.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

swiglpk-5.0.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

swiglpk-5.0.4-cp37-cp37m-macosx_10_9_x86_64.whl (865.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

swiglpk-5.0.4-cp36-cp36m-win_amd64.whl (566.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-5.0.4-cp36-cp36m-win32.whl (456.0 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-5.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

swiglpk-5.0.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

swiglpk-5.0.4-cp36-cp36m-macosx_10_9_x86_64.whl (865.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file swiglpk-5.0.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d20ca3af1990381d5a460e4ab16058089e5e8540e1fd7213a76d5c3b1246a93
MD5 21109312bb3db54825b912c78ff2caf1
BLAKE2b-256 083e1ba5f73b12441f0276791ba304fda0421a8bc9985f32669804dbb6b79b0b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 36252c4c85b792c3ebcaff8dabd69e619d8a6389282aef287e711606c10c0d6a
MD5 90be8c3b61d884374b9baa24622addd7
BLAKE2b-256 ef3fde8b8d32009aaf05a2af6761357e71f5763d26ec09170146b654444408da

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 945.7 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 74f7321b2625aa6169b8277cb3152b45dd9281f5e9f591788a2fee1b815b4d23
MD5 d3a5f74078f0bf44da967653b33350f1
BLAKE2b-256 64b8331b33c843bb673825f3956029a90145bb1d5f968d258498caf6d14e7d79

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b2c074afe8f1022d94bde665a01ad705059170f8fceccdfe532564e66df0e69
MD5 348d4ddcde00c7aaa4a19a90ec904959
BLAKE2b-256 fcd6a51f05f5143ff026007f0fc71c06d2e2b000dd95631ee3d00cc7bb51b95e

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5ed73388a8365f1cc9b45d476106414c8601c7819ac41a4d688debeef9882dc5
MD5 12664398bf76ce2032bd99ab98d7606e
BLAKE2b-256 a8dbebfa31a43a650720da222cfe1f69477b9fc7d85e7a42b11e283fce290498

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 855.6 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75476b35d0d22569b72772ce6b2ad00901e41cce804cd6a6d41786f1d1fd45bd
MD5 76be0e8d7eab4fe1cdd0cc83647edaa5
BLAKE2b-256 89c754790da7019987af3121d84031bc6cc97a78fe8201b003cd21c5a6e3407a

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 567.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f514568241d446a3de6f4cbd30a5c14ce1b27e3e3be5060e375e76158e281606
MD5 f50b085a71c4f50f0f018b4b34ad5a12
BLAKE2b-256 8ac06dcef99e4a36bc8c80fb0c2555b26412be48a690ebba46ec0faa1769f257

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 456.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3f4217564182e97cf5155068a6517d6340a4fd13fb78d5470403ec93600f5bfe
MD5 17340f92e2d166008528fe751e66d594
BLAKE2b-256 d5a7d01c4c067f5ce6079244c4155200c8897154ea48b8618a976420bce1d95e

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 296e80b9e07d517e3cc573ac0ae7cb25a179d9b58e198283194ea2c0b440e606
MD5 84068e518551d10349725f5f1066af62
BLAKE2b-256 a71129d4f346dfc62baff4d9a13137ee8a8ebf53fe8f78745da6abf8efaf8a96

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f01ac6d1103b0751f89b08aefb348c5ed0bd096d40b24266cf4913788ad96585
MD5 4f9c132caef841bd9229e6472dd31250
BLAKE2b-256 93ba21b9a54d4ce44acaf271f5a8f7bb9c8c92dbc732285e8dc8276d720ac438

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 865.9 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55c526c6748ce10d45a8354bf81de3a9c1aef11df0cd45e0fd072b9224dd3b21
MD5 149c8552c19cf40acd630b4e4a545dac
BLAKE2b-256 2dd93b32dbdbfec906b25f2e41384413cacf81e07132f27ef532a5364271ef57

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 567.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c377fa950a3132ce90cabb59d0a22afe1f0818e20e57c9ade34b0dfea57cb4a6
MD5 23b037494e723b21c2f23a789b48b0bd
BLAKE2b-256 2aa828a93680518b73725a073a46a4a342c195fdf720b400e62cb869234938dd

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 456.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 827d717cbed74edfbf33c359522e509a69c5cd7e3374dfd95a02e08dd2036eb7
MD5 7b80d4e49d8519dfa95f9b98ece6b225
BLAKE2b-256 8c9092a24aa36dffdad41334156393e07214bacbbe429f921120ccca051377ac

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb4641aed2b0bb878bbd7909b3bc714b94d5ead3a234dd284fe64a0c3f959721
MD5 55f711d53dd1f8629e0e0a1dbab14d3e
BLAKE2b-256 84c5ea098549d61d4a7e3329391f538de6a604c96ab11b3793941aa414aa8afa

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 58ecc57a3d9335d3ef517e8f0ff3a41e74dc1a536c712858aad9f95629eeae8c
MD5 f6ee6740062cf1a14c6e1086073f36c5
BLAKE2b-256 3ed2de000d3a70bfe543658bc79508a3d3b5343703b469861f7ef3c0ef6d60a3

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 865.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69b3af3c1ce9130bf93f283580254b66260b9cc6e6b789de2621459c85fa2ea2
MD5 52834714fc109d6ea21d169cb013b702
BLAKE2b-256 210e836733dcbf653336bada594284424a17ca5be40ca88e02e96c369c00ba39

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 567.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4a6172bca9437ba6f8683b3a0de43546e7f4caac4c2b197308d16dd52fbaa133
MD5 1d90792101a063dea3ea06575dc562c0
BLAKE2b-256 66acd38a3b8220dc9b78bf6796f98c1934e98a728d0f3a0ad95e28e1737c22d6

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 456.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ffd4106c39badde20d32f647acc0be696d2f52b04f843481ce1f46f99db15b0a
MD5 e614924bdd92abc20a9c6cac2b2bbf6d
BLAKE2b-256 22052e71eb2529eb515ef2378642b870c104773b7b78d5bdf5224880c4fd86b6

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e4b4a8fb503dec7ab0c65fea307a32302f5c097d7325533dfbe6ab530e6150c
MD5 a8aa5397d36832d1ade36860cdc8dca1
BLAKE2b-256 6e03da51d842bc7d8794b7420da37f47474ddf9885c980fd9aeb87c71405f3d6

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7ec89ca80f7916965c5b54d7059ed17ca20b1761503f28f54e9e69a06f65e716
MD5 eb86e8a5b354e0eee13fa116c756d4bb
BLAKE2b-256 ad0cedb81b18777de2ee11b4a8664d4dd1599ce88f451f20fc8ca5433ede61d2

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 866.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40256e362ae34f768f74d25f79afee3effc7150cf5e4d8a774411bab4b409e7f
MD5 dbae536c93bbc8b75e36ce1f7ed94470
BLAKE2b-256 50c8d1acacb166ceddc52d4e5a0fbc9e75f02dd389d8791e3a90b6286d5441fc

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 566.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b675831849eef6e573d2baa402575c0720e1271a3b68fe3d158d086af3f3a25e
MD5 488ca6ba6b8daa052cf68376a958266d
BLAKE2b-256 54995e4327b021a9791469db726287fa2e87dd8f70e2771372e82e22fde87348

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 456.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 fcd73bc01b912a2e1fede49f2b253ce78715605c096a068ace3a2cf2e1c08969
MD5 b752f88ee948c680f675cd6246463918
BLAKE2b-256 c77b2121742c1908552e278fc408d56116e2e4579327725d887a63fe26359984

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69654cac47e70e0f303dbf10397481454e257d4f8121841fa222a80e0c527bd0
MD5 eb498103438d4087d5da9ce5961de11d
BLAKE2b-256 3b791d2d3f0121cb2b19ab57c3787e001522006f5694fa3873bb98914a055fa5

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 763f7f806119a121d74daf066b6329215c06eca31caec9d1132f6e9383e55b49
MD5 2f343dc3c6db05a469446b844a013d37
BLAKE2b-256 bce2303dd907647f9c3bb875c0d3a2e01157f58ba800385a81c357253b755c68

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 865.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 941f9a719bd23b8c951fe947671ea646ac34b931a6eae695b110e5c627b7397f
MD5 d10794a6267685d390bd9d69730001b1
BLAKE2b-256 dddba5f405ac7b3d9fd1306b238ea2ee6d4bd52b676141b38a558d7685e278a3

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 566.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3dfd45934a2e8bf77126184d6a1d435908871c7d76da4a14f14b26634d311357
MD5 1c1eec8addb61b7878fc0a8698545b9d
BLAKE2b-256 9cc981f97bd1ce53c61c968948a14b6ea92559e9f6cc634ce87dbdad199286ee

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 456.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 fa55e6556feab471a8759446a80c05e31f16de2039c7d38519f4d502d7d40336
MD5 bf0f8f82ec346087dbbc1fad9cd79fe4
BLAKE2b-256 019fde2e22070038ccca6f6ac8635b759d45095c1146e1aac4e5cc58d7227fe2

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cafbafb316e811ede7f4bb790a459534a8f0a4155c130b98619c440dd78b7a0
MD5 f5ca8eda37fe605b7a9ed1f8e88463a4
BLAKE2b-256 3ac1a620aac3d89b296fdfc69e48d030d62c2d61725d49f6414ccf0ff7ffdc22

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5b2e800f26ce93017185077a480475accbe53ca91d4b626972670826b72bf932
MD5 acfba4cffd1bba35c82b2bc33fda854f
BLAKE2b-256 aea499df934873d84e75db5ceaeb9fcc7f3ddb0ef47dccf3eb42d7845b0420ca

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.4-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 865.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for swiglpk-5.0.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b950ee9425601b4f2a0a5826b901e89701a5919886416e5ed41371d5ae643eb
MD5 ca6a2f496d84db8e863edfb43d0a986a
BLAKE2b-256 d86a0d39f30900b34bba7ef8e54fa7235393c99cef9cd01445ace7e707d312d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page