Skip to main content

A collection of models and utilities for the development of edge deployable Keras models

Project description

# swiss-army-keras

A library to help with the development of AI models with Keras, with a focus on edge / IoT applications. Based originally on https://github.com/yingkaisha/keras-unet-collection (see the [README.md](https://github.com/waterviewsrl/swiss-army-keras/blob/main/README-keras-unet-collection.md))

## Summary

This library wants you to focus on dataset, model architecture and hyperparameters tuning, without worring about the rest.

It provides several helper classes which help in the development of CNN based AI models for edge IoT applications, where resources are limited and model quantization is reccomended.

The main features of the library are the following:

  1. Flexible, efficient and scalable Dataset management with augmentation pipelines leveraging albumentations (https://albumentations.ai/) and td-data (https://www.tensorflow.org/guide/data)

  2. Training driver with builtin callbacks, configurable backbone unfreezing, and quantized model generation

  3. Helper classes to easiliy combine pretrained backbones for Edge AI applications with the desired segmentation and classification architectures

  4. Additional loss functions and optimizers which are not part of the Keras distribution, as for now

## Installation

### Dependencies

tensorflow>=2.4.1 (cpu or gpu) must be installed.

Install the dependency git+https://github.com/waterviewsrl/efficientnet-lite-keras.git (forked from [sebastian-sz/efficientnet-lite-keras](https://github.com/sebastian-sz/efficientnet-lite-keras) to simplify requirements and solve minor import issues):

pip3 install git+https://github.com/waterviewsrl/efficientnet-lite-keras.git

### Install with pip

You can install directly by pypi with pip:

pip3 install swiss-army-keras

## Documentation

You can find documentation and examples [here](https://swiss-army-keras.readthedocs.io/en/latest/index.html)

Example jupyter notebooks can also be found in the example folder here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

swiss_army_keras-0.10.0-py3-none-any.whl (283.5 kB view details)

Uploaded Python 3

File details

Details for the file swiss_army_keras-0.10.0-py3-none-any.whl.

File metadata

File hashes

Hashes for swiss_army_keras-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7857f7c75ab26d08501a5df21069caaa989e74ed984988a5411d79f1fa1aca8c
MD5 82ddcade073cc65b310cb18c90765185
BLAKE2b-256 77f33d31cd30e444d172b7f007bd6f756eb2cd4819b33059c619d5d5f9914b08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page