Skip to main content

Input data for swolfpy's life-cycle process models (swolfpy_inputdata).

Project description

Input data for swolfpy’s life-cycle process models (swolfpy_inputdata)

https://img.shields.io/pypi/v/swolfpy_inputdata.svg Supported Python Versions License Downloads Format https://img.shields.io/badge/linting-pylint-yellowgreen https://img.shields.io/badge/code%20style-black-000000.svg Documentation Status Test DOI JIE DOI

Features

  • Input data for Life-cycle process models of swolfpy

    • Common data (e.g., molecular weights, heating values)

    • Material properties (46 common waste fractions; e.g., Food waste, Yard waste)

      • Chemical properties (e.g., carbon content, methane yield)

      • Physical properties (e.g., moisture content, density)

    • Material dependent process model inputs (e.g., separation efficiency for each waste fraction in the trommel)

    • Material indepent process model inputs

  • Built-in Monte Carlo simulation

Description of columns in the csv file for input data

Field

Description

Category

Category of the input (e.g., energy recovery, post closure)

Dictonary_Name

Name of the dictionary and attribute (whitespace is not allowed)

Parameter Name

Short name of the parameter (whitespace is not allowed)

Parameter Description

Longer description of the parameter

Amount

Default value for the parameter

Unit

Unit of the parameter (e.g., MJ/Mg, kW, hours/day)

Uncertainty_type

0: Undefined, 2: Lognormal, 3: normal, 4: Uniform, 5: Triangular, 7: Discrete Uniform

Loc

Mean for lognormal and normal distribution

scale

Standard deviation for lognormal and normal distribution

shape

Shape parameter for Weibull, Gamma or Beta distributions

Minimum

Lower bound/minimum for lognormal, normal, uniform, triangular, and discrete uniform distributions

maximum

Upper bound/maximum for lognormal, normal, uniform, triangular, and discrete uniform distributions

Reference

Comment

Installation

1- Download and install miniconda from: https://docs.conda.io/en/latest/miniconda.html

2- Update conda in a terminal window or anaconda prompt:

conda update conda

3- Create a new environment for swolfpy:

conda create --name swolfpy python=3.9

4- Activate the environment:

conda activate swolfpy

5- Install swolfpy_inputdata in the environment:

pip install swolfpy_inputdata

6- Use in python (e.g., Landfill model):

import swolfpy_inputdata as spid
data = spid.LF_Input()
model.calc()
#Example: Returs the actk parameter in landfill
data.LF_gas['actk']
#Example: Returns input data in dataframe format
data.Data

History

1.1.0 (2023-07-30)

  • Downgrade to Python 3.9

1.0.0 (2023-06-03)

  • Upgrade to Python 3.10

  • Add PreCommit

0.2.4 (2022-04-05)

  • Add Multi-family and commercial Waste collection

  • Add Animal feed production (AnF)

0.2.3 (2021-11-24)

  • Update Landfill

0.2.1 (2021-10-02)

  • New models: Gasification & Syngas combustion (GC), Refuse-Derived Fuel (RDF), Home composting (HC)

0.1.9 (2021-05-10)

  • Life cycle cost, input data for TS, References

0.1.0 (2020-05-06)

  • First release on PyPI. Data for the Life-cycle process models include: LF, WTE, Composting, AD, SS_MRF, reprocessing and Collection.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

swolfpy_inputdata-1.1.0.tar.gz (406.4 kB view details)

Uploaded Source

Built Distribution

swolfpy_inputdata-1.1.0-py3-none-any.whl (429.2 kB view details)

Uploaded Python 3

File details

Details for the file swolfpy_inputdata-1.1.0.tar.gz.

File metadata

  • Download URL: swolfpy_inputdata-1.1.0.tar.gz
  • Upload date:
  • Size: 406.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for swolfpy_inputdata-1.1.0.tar.gz
Algorithm Hash digest
SHA256 48b3685bffa86997b7036d6ce0ab7821fa315a1ec115d5caef78fab9c7a80490
MD5 aa2ce62e866a93a1ae14b5278b5c770c
BLAKE2b-256 233e36e290925043b4c9587afc132255a536b1a5bfb5283bf76615bba60aa825

See more details on using hashes here.

File details

Details for the file swolfpy_inputdata-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for swolfpy_inputdata-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3404ce740706af020e93a23c31863b3d35dff6003652ac684923a1b2a52b2880
MD5 640a3835c5d3c2f070a4d06c7898c0f9
BLAKE2b-256 37f0955ca2ce22ad23b82379bf7c76e71974b68d986bb744741f0b6a0e252ce4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page