Skip to main content

Nested ratio estimation and inhomogeneous poisson point process sample caching for simulator efficient marginal posterior estimation.

Project description

PyPI version Tests Syntax codecov Documentation Status Contributions welcome Code style: black

Check out the quickstart notebook --> Open In Colab

This is a beta release. If you encounter problems, please contact the authors or submit a bug report.


Truncated marginal neural ratio estimation


After installing pytorch, please run the command:

pip install swyft


Detailed documentation can be found on readthedocs.

Related tools and repositories

  • Our repository applying swyft to benchmarks and example inference problems is available at tmnre.
  • sbi is a collection of likelihood-free / simulator-based methods


If you use swyft in scientific publications, please cite one or both:

Truncated Marginal Neural Ratio Estimation. Benjamin Kurt Miller, Alex Cole, Patrick Forré, Gilles Louppe, Christoph Weniger.

Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time. Benjamin Kurt Miller, Alex Cole, Gilles Louppe, Christoph Weniger.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for swyft, version 0.2.0
Filename, size File type Python version Upload date Hashes
Filename, size swyft-0.2.0-py3-none-any.whl (60.5 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size swyft-0.2.0.tar.gz (1.6 MB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page