Skip to main content

A sybil scoring tool

Project description

sybil-scorer

Sybil scorer is a python package that provides useful classes and methods to analyze the behavior of addresses.

Help Out

Consider donating on Gitcoin https://explorer.gitcoin.co/#/round/10/0x8de918f0163b2021839a8d84954dd7e8e151326d/0x8de918f0163b2021839a8d84954dd7e8e151326d-66

Installation

  • Python >= 3.9
  • pip install sybil-scorer

What is inside?

The package has two main sub-packages.

  • sbdata is a package to easily retrieve a large amount of data from the Flipside API.
  • sblegos a package to perform on-chain transactions analysis to detect potential Sybil behavior.
  • sbutils is a package that makes it easy to load the data extracted with sbdata and use it in sblegos.

More details on the packages and examples are provided below.

sbdata

An example script to retrieve data from the flipside API is provided in the script folder: script/demo_extract_eth_txs_oss.py

It could also be used to retrieve transactional data from an address with some simple calls:

import os
from sbdata.FlipsideApi import FlipsideApi

api_key = os.environ['FLIPSIDE_API_KEY']
flipside_api = FlipsideApi(api_key, max_address=1000)
address = ['0x06cd8288dc001024ce0a1cf39caaedc0e2db9c82']
tx_add_eth = flipside_api.get_transactions(address, chain='ethereum')

It walks you through the process of retrieving data from the flipside API and saving it in a folder.

To use this package you will need an API key from flipside that you can get here: https://sdk.flipsidecrypto.xyz/shroomdk/apikeys

Useful example script are provided in the script folder.

sblegos and sbutils

sblegos provides the following analysis of legos:

  • has_same_seed : true if the address has the same seed as any other address in the grants contributors
  • has_same_seed_naive : true if the address has the same seed as any other address in the grants contributors with a naive approach: address of the from_address of the first transaction.
  • has_suspicious_seed_behavior : true if has_same_seed is different from has_same_seed_naive. It means the user performed some actions before funding his wallet.
  • has_interacted_with_other_contributor : true if the user has interacted with any other contributor to the grant
  • has_less_than_n_transactions : true if the user has less than n transactions.
  • has_transaction_similitude : true if the user has a transaction history that is similar to any other contributor to the grant.
  • has_transaction_similitude_opti : an optimized version of has_transaction_similitude, when used across multiple addresses.

A jupyter notebook using both packages is available as a jupyter notebook here https://github.com/poupou-web3/grant-exploration/blob/main/gr-climate-exploration.ipynb

The following snippet of code will check if any address has the same seed as any other contributor to the climate grant

import os
from pathlib import Path
import numpy as np
import pandas as pd
from sbutils import LoadData
from sblegos.TransactionAnalyser import TransactionAnalyser as txa

# Set path to data folder
PATH_TO_EXPORT = 'path to where the data was extracted'
CHAIN = 'the name of the chain you want to analyse for example "ethereum"'

# Load the votes data
array_unique_address = df_votes['voter'].unique() # array of unique voters, here df_votes contains all the votes made on a grant 

# Be sure that the address are in lower case
array_unique_address = np.char.lower(array_unique_address.astype(str))
print(f'Number of unique voter: {len(array_unique_address)}')

# Load the transactions of the addresses using the sbutils package
data_loader = LoadData.LoadData(PATH_TO_EXPORT)
df_tx = data_loader.create_df_tx(CHAIN, array_unique_address)

# Initialise the TransactionAnalyser class
tx_analyser = txa(df_tx, array_address=array_unique_address)

# Compute some predetermined features, it can takes some time especially on large datasets
df_matching_address = tx_analyser.get_df_features()
df_matching_address.head(2)

# For individual computation of the features:
df_matching_address = pd.DataFrame(array_unique_address, columns=["address"])
df_matching_address['seed_same_naive'] = df_matching_address.loc[:, 'address'].apply(lambda x : tx_analyser.has_same_seed_naive(x))

Documentation

The documentation of the package is available at https://sybil-scorer.readthedocs.io/en/latest/py-modindex.html. For a local version of the documentation, you can build it using sphinx. with the following commands:

cd docs
sphinx-apidoc -o ./source ../sbscorer
make html

Then open the file docs/build/html/index.html in your browser. The local version of the documentation is prettier than the one hosted on readthedocs. doc.png

Example Data

Some data for easier use of the package in the context of Gitcoin grants are made available on Ocean market.

Gitcoin Citizen Round data

Transaction data

You can load the data directly into the df_tx variable. https://huggingface.co/datasets/Poupou/Gitcoin-Citizen-Round/blob/main/tx_citizen_round.parquet

These are all the transactions performed by users who contributed to the Citizen round on grant as of 30th of June 2023.

Example of vote data

Example query to extract the vote data of the citizen round of June 2023 from the Flipside API: https://flipsidecrypto.xyz/poupou/q/j3E9SEfMLkxG/citizen-round-votes

You could also use the data available on hugging face: https://huggingface.co/datasets/Poupou/Gitcoin-Citizen-Round/blob/main/citizen-votes.csv

Future works

Future works include:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sybil-scorer-0.4.0.tar.gz (23.5 kB view details)

Uploaded Source

Built Distribution

sybil_scorer-0.4.0-py3-none-any.whl (24.8 kB view details)

Uploaded Python 3

File details

Details for the file sybil-scorer-0.4.0.tar.gz.

File metadata

  • Download URL: sybil-scorer-0.4.0.tar.gz
  • Upload date:
  • Size: 23.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for sybil-scorer-0.4.0.tar.gz
Algorithm Hash digest
SHA256 83b2ecfef844e7ef89e44bfa23739d67ab5bf8d622719393bdd4706c36cd34b3
MD5 79c7609f05e2a128eb6b12f16f8218ec
BLAKE2b-256 b2eb645d2db1508d565f430b4f226c46bda52cfeb2d1d7c04f95522252f78958

See more details on using hashes here.

File details

Details for the file sybil_scorer-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for sybil_scorer-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 83690fb2d1c9f48e7ef7f57411743f57cc23517425f318fb9bd5f5b198b9df82
MD5 552e2a1a2a39763ee170af10560fcc98
BLAKE2b-256 87074034538f88d1d4663be3f7c99dbc9010dda39b7b8d8f41d78d5bcca93d54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page