Skip to main content

A Library for Private, Secure Deep Learning

Project description

# Introduction

[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/OpenMined/PySyft/master) [![Build Status](https://travis-ci.org/OpenMined/PySyft.svg?branch=torch_1)](https://travis-ci.org/OpenMined/PySyft) [![Chat on Slack](https://img.shields.io/badge/chat-on%20slack-7A5979.svg)](https://openmined.slack.com/messages/team_pysyft) [![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=small)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_small)

PySyft is a Python library for secure, private Deep Learning. PySyft decouples private data from model training, using [Multi-Party Computation (MPC)](https://en.wikipedia.org/wiki/Secure_multi-party_computation) within PyTorch. Join the movement on [Slack](http://slack.openmined.org/).

## PySyft in Detail

A more detailed explanation of PySyft can be found in the [paper on arxiv](https://arxiv.org/abs/1811.04017)

PySyft has also been explained in video form by [Siraj Raval](https://www.youtube.com/watch?v=39hNjnhY7cY&feature=youtu.be&a=)

## Installation

> PySyft supports Python >= 3.6 and PyTorch 1.0.0

`bash pip install syft ` ## Run Local Notebook Server All the examples can be played with by running the command `bash make notebook ` and selecting the pysyft kernel

## Try out the Tutorials

A comprehensive list of tutorials can be found [here](https://github.com/OpenMined/PySyft/tree/master/examples/tutorials)

These tutorials cover how to perform techniques such as federated learning and differential privacy using PySyft.

## Start Contributing

The guide for contributors can be found [here](https://github.com/OpenMined/PySyft/tree/master/CONTRIBUTING.md). It covers all that you need to know to start contributing code to PySyft in an easy way.

Also join the rapidly growing community of 2500+ on [Slack](http://slack.openmined.org). The slack community is very friendly and great about quickly answering questions about the use and development of PySyft!

## Organizational Contributions

We are very grateful for contributions to PySyft from the following organizations!

![drawing](https://raw.githubusercontent.com/coMindOrg/federated-averaging-tutorials/master/images/comindorg_logo.png)

[coMind Website](https://comind.org/) & [coMind Github](https://github.com/coMindOrg/federated-averaging-tutorials)

## Disclaimer

Do NOT use this code to protect data (private or otherwise) - at present it is very insecure.

## License

[Apache License 2.0](https://github.com/OpenMined/PySyft/blob/master/LICENSE)

[![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=large)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_large)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

syft-0.1.1a2.tar.gz (61.0 kB view details)

Uploaded Source

Built Distribution

syft-0.1.1a2-py3-none-any.whl (81.5 kB view details)

Uploaded Python 3

File details

Details for the file syft-0.1.1a2.tar.gz.

File metadata

  • Download URL: syft-0.1.1a2.tar.gz
  • Upload date:
  • Size: 61.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for syft-0.1.1a2.tar.gz
Algorithm Hash digest
SHA256 81d2d3037b43cd1c22e2139afbb1c984e76c8b3e9adaa834b3575b6e2903448f
MD5 e7639bc14cbd5a7283650c803762bc47
BLAKE2b-256 c057c0434ce23845b16062cbe7c8cf82fac31f7f2f8a0f65c8a44544444c6119

See more details on using hashes here.

File details

Details for the file syft-0.1.1a2-py3-none-any.whl.

File metadata

  • Download URL: syft-0.1.1a2-py3-none-any.whl
  • Upload date:
  • Size: 81.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for syft-0.1.1a2-py3-none-any.whl
Algorithm Hash digest
SHA256 bb98c7a4bf0ded4b13a8957e899ad30329813e94d6acdbcc3bc1258c693e5be2
MD5 98f9b3f6a7dc0542fdf01441de310eff
BLAKE2b-256 2d9e7ea08e6d61bc84256aa8e912e6b4f8ca900e985b0cf89135f898621b8c02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page