A Library for Private, Secure Deep Learning
Project description
# Introduction
[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/OpenMined/PySyft/master) [![Build Status](https://travis-ci.org/OpenMined/PySyft.svg?branch=torch_1)](https://travis-ci.org/OpenMined/PySyft) [![Chat on Slack](https://img.shields.io/badge/chat-on%20slack-7A5979.svg)](https://openmined.slack.com/messages/team_pysyft) [![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=small)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_small)
PySyft is a Python library for secure, private Deep Learning. PySyft decouples private data from model training, using [Multi-Party Computation (MPC)](https://en.wikipedia.org/wiki/Secure_multi-party_computation) within PyTorch. Join the movement on [Slack](http://slack.openmined.org/).
## PySyft in Detail
A more detailed explanation of PySyft can be found in the [paper on arxiv](https://arxiv.org/abs/1811.04017)
PySyft has also been explained in video form by [Siraj Raval](https://www.youtube.com/watch?v=39hNjnhY7cY&feature=youtu.be&a=)
## Installation
> PySyft supports Python >= 3.6 and PyTorch 1.0.0
`bash pip install syft ` ## Run Local Notebook Server All the examples can be played with by running the command `bash make notebook ` and selecting the pysyft kernel
## Try out the Tutorials
A comprehensive list of tutorials can be found [here](https://github.com/OpenMined/PySyft/tree/master/examples/tutorials)
These tutorials cover how to perform techniques such as federated learning and differential privacy using PySyft.
## Start Contributing
The guide for contributors can be found [here](https://github.com/OpenMined/PySyft/tree/master/CONTRIBUTING.md). It covers all that you need to know to start contributing code to PySyft in an easy way.
Also join the rapidly growing community of 2500+ on [Slack](http://slack.openmined.org). The slack community is very friendly and great about quickly answering questions about the use and development of PySyft!
## Organizational Contributions
We are very grateful for contributions to PySyft from the following organizations!
![drawing](https://raw.githubusercontent.com/coMindOrg/federated-averaging-tutorials/master/images/comindorg_logo.png)
[coMind Website](https://comind.org/) & [coMind Github](https://github.com/coMindOrg/federated-averaging-tutorials)
## Disclaimer
Do NOT use this code to protect data (private or otherwise) - at present it is very insecure.
## License
[Apache License 2.0](https://github.com/OpenMined/PySyft/blob/master/LICENSE)
[![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=large)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_large)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file syft-0.1.1a2.tar.gz
.
File metadata
- Download URL: syft-0.1.1a2.tar.gz
- Upload date:
- Size: 61.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81d2d3037b43cd1c22e2139afbb1c984e76c8b3e9adaa834b3575b6e2903448f |
|
MD5 | e7639bc14cbd5a7283650c803762bc47 |
|
BLAKE2b-256 | c057c0434ce23845b16062cbe7c8cf82fac31f7f2f8a0f65c8a44544444c6119 |
File details
Details for the file syft-0.1.1a2-py3-none-any.whl
.
File metadata
- Download URL: syft-0.1.1a2-py3-none-any.whl
- Upload date:
- Size: 81.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb98c7a4bf0ded4b13a8957e899ad30329813e94d6acdbcc3bc1258c693e5be2 |
|
MD5 | 98f9b3f6a7dc0542fdf01441de310eff |
|
BLAKE2b-256 | 2d9e7ea08e6d61bc84256aa8e912e6b4f8ca900e985b0cf89135f898621b8c02 |