Skip to main content

Perform numpy-like analysis on data that remains in someone elses server

Project description



Syft Logo

Perform data science on data that remains in someone else's server

Quickstart

LinuxmacOSWindowsDockerPodmanKubernetes

Install Client

$ pip install -U syft[data_science]

Launch Server

# from Jupyter / Python
import syft as sy
sy.requires(">=0.8.3,<0.8.4")
node = sy.orchestra.launch(name="my-domain", port=8080, dev_mode=True, reset=True)
# or from the command line
$ syft launch --name=my-domain --port=8080 --reset=True

Starting syft-node server on 0.0.0.0:8080

Launch Client

import syft as sy
sy.requires(">=0.8.3,<0.8.4")
domain_client = sy.login(port=8080, email="info@openmined.org", password="changethis")

PySyft in 10 minutes

📝 API Example Notebooks

Deploy Kubernetes Helm Chart

Note: Assuming we have a Kubernetes cluster already setup.

1. Add and update Helm repo for Syft

$ helm repo add openmined https://openmined.github.io/PySyft/helm
$ helm repo update openmined

2. Search for available Syft versions

$ helm search repo openmined/syft --versions --devel

3. Set your preferred Syft Chart version

SYFT_VERSION="<paste the chart version number>"

4. Provisioning Helm Charts

$ helm install my-domain openmined/syft --version $SYFT_VERSION --namespace syft --create-namespace --set ingress.ingressClass=traefik

Azure or GCP Ingress

$ helm install ... --set ingress.ingressClass="azure/application-gateway"
$ helm install ... --set ingress.ingressClass="gce"

Deploy to a Container Engine or Cloud

  1. Install our handy 🛵 cli tool which makes deploying a Domain or Gateway server to Docker or VM a one-liner:
    pip install -U hagrid

  2. Then run our interactive jupyter Install 🧙🏽‍♂️ WizardBETA:
    hagrid quickstart

  3. In the tutorial you will learn how to install and deploy:
    PySyft = our numpy-like 🐍 Python library for computing on private data in someone else's Domain

    PyGrid = our 🐳 docker / 🐧 vm Domain & Gateway Servers where private data lives

Docs and Support

Install Notes

  • HAGrid 0.3 Requires: 🐍 python 🐙 git - Run: pip install -U hagrid
  • Interactive Install 🧙🏽‍♂️ WizardBETA Requires 🛵 hagrid: - Run: hagrid quickstart
  • PySyft 0.8.1 Requires: 🐍 python 3.9 - 3.11 - Run: pip install -U syft
  • PyGrid Requires: 🐳 docker, 🦦 podman or ☸️ kubernetes - Run: hagrid launch ...

Versions

0.9.0 - Coming soon...
0.8.4 (Beta) - dev branch 👈🏽 API - Coming soon...
0.8.3 (Stable) - API

Deprecated:

PySyft and PyGrid use the same version and its best to match them up where possible. We release weekly betas which can be used in each context:

PySyft (Stable): pip install -U syft
PyGrid (Stable) hagrid launch ... tag=latest

PySyft (Beta): pip install -U syft --pre
PyGrid (Beta): hagrid launch ... tag=beta

HAGrid is a cli / deployment tool so the latest version of hagrid is usually the best.

What is Syft?

Syft

Syft is OpenMined's open source stack that provides secure and private Data Science in Python. Syft decouples private data from model training, using techniques like Federated Learning, Differential Privacy, and Encrypted Computation. This is done with a numpy-like interface and integration with Deep Learning frameworks, so that you as a Data Scientist can maintain your current workflow while using these new privacy-enhancing techniques.

Why should I use Syft?

Syft allows a Data Scientist to ask questions about a dataset and, within privacy limits set by the data owner, get answers to those questions, all without obtaining a copy of the data itself. We call this process Remote Data Science. It means in a wide variety of domains across society, the current risks of sharing information (copying data) with someone such as, privacy invasion, IP theft and blackmail will no longer prevent the vast benefits such as innovation, insights and scientific discovery which secure access will provide.

No more cold calls to get access to a dataset. No more weeks of wait times to get a result on your query. It also means 1000x more data in every domain. PySyft opens the doors to a streamlined Data Scientist workflow, all with the individual's privacy at its heart.

Terminology

👨🏻‍💼 Data Owners

👩🏽‍🔬 Data Scientists

Provide datasets which they would like to make available for study by an outside party they may or may not fully trust has good intentions.

Are end users who desire to perform computations or answer a specific question using one or more data owners' datasets.

🏰 Domain Server

🔗 Gateway Server

Manages the remote study of the data by a Data Scientist and allows the Data Owner to manage the data and control the privacy guarantees of the subjects under study. It also acts as a gatekeeper for the Data Scientist's access to the data to compute and experiment with the results.

Provides services to a group of Data Owners and Data Scientists, such as dataset search and bulk project approval (legal / technical) to participate in a project. A gateway server acts as a bridge between it's members (Domains) and their subscribers (Data Scientists) and can provide access to a collection of domains at once.

Community

Courses

Contributors

OpenMined and Syft appreciates all contributors, if you would like to fix a bug or suggest a new feature, please see our guidelines.

Contributors

Supporters

Open Collective

OpenMined is a fiscally sponsored 501(c)(3) in the USA. We are funded by our generous supporters on Open Collective.

Contributors

Disclaimer

Syft is under active development and is not yet ready for pilots on private data without our assistance. As early access participants, please contact us via Slack or email if you would like to ask a question or have a use case that you would like to discuss.

License

Apache License 2.0
Person icons created by Freepik - Flaticon

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

syft-0.8.4b1.tar.gz (367.1 kB view details)

Uploaded Source

Built Distribution

syft-0.8.4b1-py2.py3-none-any.whl (431.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file syft-0.8.4b1.tar.gz.

File metadata

  • Download URL: syft-0.8.4b1.tar.gz
  • Upload date:
  • Size: 367.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for syft-0.8.4b1.tar.gz
Algorithm Hash digest
SHA256 acb04a22fc1584ce7af2537e85c36609c755babccf3b8e73bb547d07a1e89408
MD5 dabafa8111f3d4f60af79761e8ac8bfd
BLAKE2b-256 72f7004f04f4bbafaf05f18bc5b52da7485cc17f8bd2b573fea76e0bebffab08

See more details on using hashes here.

File details

Details for the file syft-0.8.4b1-py2.py3-none-any.whl.

File metadata

  • Download URL: syft-0.8.4b1-py2.py3-none-any.whl
  • Upload date:
  • Size: 431.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for syft-0.8.4b1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d5d2c0c43656ac9edb088e6c23d95de3d7a795dc170bf5e01f7429a1330b3b7b
MD5 3c6eaff381c444d762822ce5a8b0ab4e
BLAKE2b-256 80bbfc70e79a3ae876ca6950b6568cea24b1097a9ef6d1fa472496529cea19b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page