Skip to main content

Symbolx helps collecting several scenarios data such as multidimentional variables and parameters for reporting and visualization wiht help of karray

Project description

symbolx

Dealling with multiple scenarios data? This tool helps collecting several scenarios data such as multidimentional variables and parameters for reporting and visualization

Initial setting to be able to collect scenarios info. The following example uses parser and loader for GAMS-dieterpy output. For CSV and Arrow file formats see the test folder in https://gitlab.com/diw-evu/symbolx/-/tree/main/test

import os
import symbolx as syx
from symbolx import DataCollection, SymbolsHandler, Symbol
import karray as ka


folder = "project_files/data_output"
# Next two lines allows to compress or unzip the current scenarios folders
# syx.compress_subdirs(folder=folder, zip_extension='7z', delete=True)
# syx.unzip_all(folder=folder, zip_extension='7z', delete=True)

# This example is for dieterpy users as this considers gams path, GDX parser and loader
DC = DataCollection()
DC.add_collector(collector_name='gdx_collector', parser=syx.symbol_parser_gdx, loader=syx.load_gdx)
DC.add_folder('gdx_collector', folder)
# These atrributes are arguments of the loader function. It may vary depending on the loader we use. This exmaple is for syx.load_gdx
DC.add_custom_attr(collector_name='gdx_collector', inf_to_zero=True, verbose=False)
# Use zip_extension='7z', if we consider scenario folders compresed with '.7z'. 
# Use serializer='yml' if using scenario folders created with dieterpy.__version__ < (1.6.0)
DC.adquire(id_integer=False, serializer='json', gams_dir=None, zip_extension=None)

SH = SymbolsHandler(method='object', obj=DC)
ka.settings.order = ['id','n','g','s','l','h']
# Resulting symbols will follow this order. This should be addapted to the actual dimension names of your variables

You can create the symbols and make operations.

Z = Symbol("Z", symbol_handler=SH)

PRICE = Symbol("eq_nodalbalance", "m", symbol_handler=SH)*-1

G_L = Symbol("G_L", symbol_handler=SH)

STO_OUT = Symbol("STO_OUT", symbol_handler=SH)

# Some relevant methods
Z.df

Z.dfc

Z.dfm

G_L.items

G_L.array # this shows the karray attribute of symbolx

STO_OUT.rename_dim(**{'s':'g'})

G_L.dimreduc('h')

Z.add_dim('n','DE')

G_L.shrink(g=['wind','pv'])

# Symbols operations
BILL = G_L*PRICE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

symbolx-0.4.3.tar.gz (27.7 kB view details)

Uploaded Source

Built Distribution

symbolx-0.4.3-py3-none-any.whl (29.1 kB view details)

Uploaded Python 3

File details

Details for the file symbolx-0.4.3.tar.gz.

File metadata

  • Download URL: symbolx-0.4.3.tar.gz
  • Upload date:
  • Size: 27.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for symbolx-0.4.3.tar.gz
Algorithm Hash digest
SHA256 b27d7c302fc2f93bd2e54fe4e55d5ee4e3b52b1ac6b0f92d18f4f28e0af46494
MD5 4b079be0288077ab564a451b95c65ccd
BLAKE2b-256 8239ef6b0cef59b5c235175eb1ab971f1e55a3b09e412657f3beb8e149d70697

See more details on using hashes here.

File details

Details for the file symbolx-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: symbolx-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 29.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for symbolx-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 bccd0ef4f914585826799383bf55931fb05e7cb6624ffd69bd4fa066e9f8d31c
MD5 ac410970e3bc993c1922cb93e74dc968
BLAKE2b-256 65f99808bd693f51636952380a3411fbfc1d97643f8daad850772eeb158e70d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page