Skip to main content

Interaction of multiple language models

Project description

Symposium

Interactions with multiple language models require at least a little bit of a 'unified' interface. The 'symposium' packagee is an attempt to do that. It is a work in progress and will change without notice. If you need a recording capabilities, install the grammateus package and pass an instance of Grammateus/recorder in your calls to connectors.

Anthropic

Import:

from symposium.connectors import anthropic_rest as ant

Messages

messages = [
  {"role": "user", "content": "Can we change human nature?"}
    
]
kwargs = {
    "model":                "claude-3-sonnet-20240229",
    "system":               "answer concisely",
    # "messages":             [],
    "max_tokens":           5,
    "stop_sequences":       ["stop", ant.HUMAN_PREFIX],
    "stream":               False,
    "temperature":          0.5,
    "top_k":                250,
    "top_p":                0.5
}
response = ant.claud_message(messages,**kwargs)

Completion

prompt = "Can we change human nature?"
kwargs = {
    "model":                "claude-instant-1.2",
    "max_tokens":           5,
    # "prompt":               prompt,
    "stop_sequences":       [ant.HUMAN_PREFIX],
    "temperature":          0.5,
    "top_k":                250,
    "top_p":                0.5
}
response = ant.claud_complete(prompt, **kwargs)

OpenAI

Import:

from symposium.connectors import openai_rest as oai

Messages

messages = [
  {"role": "user", "content": "Can we change human nature?"}
]
kwargs = {
    "model":                "gpt-3.5-turbo",
    # "messages":             [],
    "max_tokens":           5,
    "n":                    1,
    "stop_sequences":       ["stop"],
    "seed":                 None,
    "frequency_penalty":    None,
    "presence_penalty":     None,
    "logit_bias":           None,
    "logprobs":             None,
    "top_logprobs":         None,
    "temperature":          0.5,
    "top_p":                0.5,
    "user":                 None
}
responses = oai.gpt_message(messages, **kwargs)

Completion

prompt = "Can we change human nature?"
kwargs = {
    "model":                "gpt-3.5-turbo-instruct",
    # "prompt":               str,
    "suffix":               str,
    "max_tokens":           5,
    "n":                    1,
    "best_of":              None,
    "stop_sequences":       ["stop"],
    "seed":                 None,
    "frequency_penalty":    None,
    "presence_penalty":     None,
    "logit_bias":           None,
    "logprobs":             None,
    "top_logprobs":         None,
    "temperature":          0.5,
    "top_p":                0.5,
    "user":                 None
}
responses = oai.gpt_complete(prompt, **kwargs)

Gemini

Import:

from symposium.connectors import gemini_rest as gem

Messages

messages = [
        {
            "role": "user",
            "parts": [
                {"text": "Human nature can not be changed, because..."},
                {"text": "...and that is why human nature can not be changed."}
            ]
        },{
            "role": "model",
            "parts": [
                {"text": "Should I synthesize a text that will be placed between these two statements and follow the previous instruction while doing that?"}
            ]
        },{
            "role": "user",
            "parts": [
                {"text": "Yes, please do."},
                {"text": "Create a most concise text possible, preferably just one sentence}"}
            ]
        }
]
kwargs = {
    "model":                "gemini-1.0-pro",
    # "messages":             [],
    "stop_sequences":       ["STOP","Title"],
    "temperature":          0.5,
    "max_tokens":           5,
    "n":                    1,
    "top_p":                0.9,
    "top_k":                None
}
response = gem.gemini_content(messages, **kwargs)

PaLM

Import:

from symposium.connectors import palm_rest as path

Completion

kwargs = {
    "model": "text-bison-001",
    "prompt": str,
    "temperature": 0.5,
    "n": 1,
    "max_tokens": 10,
    "top_p": 0.5,
    "top_k": None
}
responses = path.palm_complete(prompt, **kwargs)

Messages

context = "This conversation will be happening between Albert and Niels"
examples = [
        {
            "input": {"author": "Albert", "content": "We didn't talk about quantum mechanics lately..."},
            "output": {"author": "Niels", "content": "Yes, indeed."}
        }
]
messages = [
        {
            "author": "Albert",
            "content": "Can we change human nature?"
        }, {
            "author": "Niels",
            "content": "Not clear..."
        }, {
            "author": "Albert",
            "content": "Seriously, can we?"
        }
]
kwargs = {
    "model": "chat-bison-001",
    # "context": str,
    # "examples": [],
    # "messages": [],
    "temperature": 0.5,
    # no 'max_tokens', beware the effects of that!
    "n": 1,
    "top_p": 0.5,
    "top_k": None
}
responses = path.palm_content(context, examples, messages, **kwargs)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

symposium-0.1.6.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

symposium-0.1.6-py3-none-any.whl (34.4 kB view details)

Uploaded Python 3

File details

Details for the file symposium-0.1.6.tar.gz.

File metadata

  • Download URL: symposium-0.1.6.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for symposium-0.1.6.tar.gz
Algorithm Hash digest
SHA256 6dcc2d3a6b03fe2672bbdf4aeb1a4a52bd2e8cd26863d52956969440ffa1281e
MD5 c929e974769494ea45bb0680ff024fb1
BLAKE2b-256 118f93c78d50a5ecb7113a4d819b7de24e623ee4e8951a0129a65e359a161224

See more details on using hashes here.

File details

Details for the file symposium-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: symposium-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for symposium-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 7b24f1336ea96f1a0437de89234e08d882c2cfd634481da91f90de714bd23e79
MD5 1621935965375c14c81a6e6e00f5c687
BLAKE2b-256 6afd34d9e47a4623e8daff23e1877fb79ebb613ed12dc9a664441a5f2b02453d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page