Skip to main content

Interaction of multiple language models

Project description

Symposium

Interactions with multiple language models require at least a little bit of a 'unified' interface. The 'symposium' packagee is an attempt to do that. It is a work in progress and will change without notice. If you need a recording capabilities, install the grammateus package and pass an instance of Grammateus/recorder in your calls to connectors.

Anthropic

Import:

from symposium.connectors import anthropic_rest as ant

Messages

messages = [
  {"role": "user", "content": "Can we change human nature?"}
    
]
kwargs = {
    "model":                "claude-3-sonnet-20240229",
    "system":               "answer concisely",
    # "messages":             [],
    "max_tokens":           5,
    "stop_sequences":       ["stop", ant.HUMAN_PREFIX],
    "stream":               False,
    "temperature":          0.5,
    "top_k":                250,
    "top_p":                0.5
}
response = ant.claud_message(messages,**kwargs)

Completion

prompt = "Can we change human nature?"
kwargs = {
    "model":                "claude-instant-1.2",
    "max_tokens":           5,
    # "prompt":               prompt,
    "stop_sequences":       [ant.HUMAN_PREFIX],
    "temperature":          0.5,
    "top_k":                250,
    "top_p":                0.5
}
response = ant.claud_complete(prompt, **kwargs)

OpenAI

Import:

from symposium.connectors import openai_rest as oai

Messages

messages = [
  {"role": "user", "content": "Can we change human nature?"}
]
kwargs = {
    "model":                "gpt-3.5-turbo",
    # "messages":             [],
    "max_tokens":           5,
    "n":                    1,
    "stop_sequences":       ["stop"],
    "seed":                 None,
    "frequency_penalty":    None,
    "presence_penalty":     None,
    "logit_bias":           None,
    "logprobs":             None,
    "top_logprobs":         None,
    "temperature":          0.5,
    "top_p":                0.5,
    "user":                 None
}
responses = oai.gpt_message(messages, **kwargs)

Completion

prompt = "Can we change human nature?"
kwargs = {
    "model":                "gpt-3.5-turbo-instruct",
    # "prompt":               str,
    "suffix":               str,
    "max_tokens":           5,
    "n":                    1,
    "best_of":              None,
    "stop_sequences":       ["stop"],
    "seed":                 None,
    "frequency_penalty":    None,
    "presence_penalty":     None,
    "logit_bias":           None,
    "logprobs":             None,
    "top_logprobs":         None,
    "temperature":          0.5,
    "top_p":                0.5,
    "user":                 None
}
responses = oai.gpt_complete(prompt, **kwargs)

Gemini

Import:

from symposium.connectors import gemini_rest as gem

Messages

messages = [
        {
            "role": "user",
            "parts": [
                {"text": "Human nature can not be changed, because..."},
                {"text": "...and that is why human nature can not be changed."}
            ]
        },{
            "role": "model",
            "parts": [
                {"text": "Should I synthesize a text that will be placed between these two statements and follow the previous instruction while doing that?"}
            ]
        },{
            "role": "user",
            "parts": [
                {"text": "Yes, please do."},
                {"text": "Create a most concise text possible, preferably just one sentence}"}
            ]
        }
]
kwargs = {
    "model":                "gemini-1.0-pro",
    # "messages":             [],
    "stop_sequences":       ["STOP","Title"],
    "temperature":          0.5,
    "max_tokens":           5,
    "n":                    1,
    "top_p":                0.9,
    "top_k":                None
}
response = gem.gemini_content(messages, **kwargs)

PaLM

Import:

from symposium.connectors import palm_rest as path

Completion

kwargs = {
    "model": "text-bison-001",
    "prompt": str,
    "temperature": 0.5,
    "n": 1,
    "max_tokens": 10,
    "top_p": 0.5,
    "top_k": None
}
responses = path.palm_complete(prompt, **kwargs)

Messages

context = "This conversation will be happening between Albert and Niels"
examples = [
        {
            "input": {"author": "Albert", "content": "We didn't talk about quantum mechanics lately..."},
            "output": {"author": "Niels", "content": "Yes, indeed."}
        }
]
messages = [
        {
            "author": "Albert",
            "content": "Can we change human nature?"
        }, {
            "author": "Niels",
            "content": "Not clear..."
        }, {
            "author": "Albert",
            "content": "Seriously, can we?"
        }
]
kwargs = {
    "model": "chat-bison-001",
    # "context": str,
    # "examples": [],
    # "messages": [],
    "temperature": 0.5,
    # no 'max_tokens', beware the effects of that!
    "n": 1,
    "top_p": 0.5,
    "top_k": None
}
responses = path.palm_content(context, examples, messages, **kwargs)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

symposium-0.1.7.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

symposium-0.1.7-py3-none-any.whl (36.7 kB view details)

Uploaded Python 3

File details

Details for the file symposium-0.1.7.tar.gz.

File metadata

  • Download URL: symposium-0.1.7.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for symposium-0.1.7.tar.gz
Algorithm Hash digest
SHA256 1bed7697c5d3d6baa38a75e91d6a70190a914348cb225d92419deff31ae94eba
MD5 c7d4b5762f5109a09aa20443556acc9d
BLAKE2b-256 6a9cfeb56dad42c5cdbda9186b50104bbec19f545b0e1244949fad3b11a04644

See more details on using hashes here.

File details

Details for the file symposium-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: symposium-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 36.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for symposium-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 824bfed929e3eb452ee8b9646c2505547b2e0960a4201666c65fed0c94593c7a
MD5 28e015d7ac080a43753d59a695db1e62
BLAKE2b-256 1b6166da0059ff9cb5b6a3d53275c6b8cfcb15e781b88ba818157ac87b229f8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page