No project description provided
Project description
Synth Machine
AI Agents are State Machines not DAGs
Synth Machines lets users create and run AI agent state machines (Synth
) by providing a SynthDefinition
to define a structured AI workflow.
State machines are a powerful construct as they enable a domain expert to deconstruct the problem into sets of states and transitions.
Transitions between states can then call an LLM, tool, data process or a mixture of many outputs.
Installation
API Models
Install the package.
pip install synth_machine[openai,togetherai,anthropic]
or
poetry add synth_machine[openai,togetherai,anthropic]
Add either setup your API provider environment keys for which
# You only need to set the API providers you want to use.
export OPENAI_API_KUY=secret
export ANTHROPIC_API_KEY=secret
export TOGETHER_API_KEY=secret
(soon) Local Models
pip install synth_machine[vllm,llamacpp]
or
poetry add synth_machine[vllm,llamacpp]
You will likely need to setup CUDA, VLLM or Llama.cpp for local use.
Helpful links:
- https://docs.vllm.ai/en/latest/getting_started/installation.html
- https://developer.nvidia.com/cuda-toolkit
- https://github.com/ggerganov/llama.cpp
Define a Synth
agent = Synth(
config: dict[SynthDefinition], # Synth state machine defining states, transitions and prompts.
tools=[], # List of tools the agent will use
memory={}, # Any existing memory to add on top of any model_config.initial_memory
rag_runner: Optional[RAG] = None # Define a RAG integration for your agent.
postprocess_functions = [] # Any glue code functions
store : ObjectStore = ObjectStore(":memory:") # Any files created by tools will automatically go to you object store
The SynthDefinition
can be found in SynthDefinition Docs or synth_machine/synth_definition.py. The Pydantic BaseModels which make up SynthDefinition
will be the most accurate representation of a Synth
.
We expect the specification to have updates between major versions.
Agent state and possible triggers
At any point, you can check the current state and next triggers
# Check state
agent.current_state()
# Triggers
agent.interfaces_for_available_triggers()
Run a Synth
Batch
await agent.trigger(
"[trigger_name]",
params={
"input_1": "hello"
}
)
Batch transition calls will output any output variable generated in that transition.
Streaming
await agent.streaming_trigger(
"[trigger_name]",
params={
"input_1": "hello"
}
)
Streaming responses yield any of the following events:
class YieldTasks(StrEnum):
CHUNK = "CHUNK"
MODEL_CONFIG = "MODEL_CONFIG"
SET_MEMORY = "SET_MEMORY"
SET_ACTIVE_OUTPUT = "SET_ACTIVE_OUTPUT"
CHUNK
: LLM generations are sent by chunks one token at a time.MODEL_CONFIG
: Yields which executor is currently being used for any provider specific frontend interfaces.SET_MEMORP
: Sends events setting new memory variablesSET_ACTIVE_OUTPUT
: Yields the current transition output trigger.
This lets users experiment using trigger
and then integrate to real time stream LLM generations to users using Server Side Events (SSE) and trigger_streaming
.
LLMs
We offer multiple executors to generate local or API driven LLM chat completions.
API Models
openai
: https://openai.com/api/pricing/togetherai
: https://docs.together.ai/docs/inference-modelsanthropic
: https://docs.anthropic.com/en/docs/models-overview- (soon)
google
: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/overview
Local (soon)
VLLM
: https://github.com/vllm-project/vllmLlama-CPP
: https://github.com/ggerganov/llama.cpp
Model Config
You can specify the provider and model in either default-model-config
and the synth base or model_config
on transition output.
ModelConfig:
...
executor: [openai|togetherai|anthropic|vllm|llamacpp]
llm_name: [model_name]
Memory
Agent memory is a dictionary containing all interim variables creates in previous states and human / system inputs.
agent.memory
# -> {
# "[memory_key]": [memory_value]
# }
Tools
Postprocess functions should only be used for basic glue code, all major functionality should be built into Tools.
Tools are RestAPIs and can be added by providing a JSON API schema
Go to "./tools/tofuTool/api.py
to view the functionality.
Start API
cd tools/tofuTool
poetry install
poetry run uvicorn api:app --port=5001 --reload
Retrieve API spec
curl -X GET http://localhost:5001/openapi.json > openapi_schema.json
Define Tool
You can define a Tool as such with only the name, API endpoint and tool openapi schema.
tofu_tool = Tool(
name="tofu_tool",
api_endpoint="http://localhost:5001",
api_spec=tool_spec
)
Synth Machine RAG
Retrieval augemented generation is a powerful tool to improve LLM responses by providing semantically similar examples or exerts to the material the LLM is attempting to generate.
synth_machine
is flexibly in such that as long as you inherit from synth_machine.RAG
and create:
embed(documents: List[str])
andquery(prompt: str, rag_config: Optional[synth_machine.RAGConfig])
It is easy to integrate multiple providers and vector databases. Over time there will be supported and community RAG implementations across a wide variety of embeddings providers and vector databases.
RAG Example Qdrant & FastEmbed
The following RAG class is ideal for experimenting with local RAG setups on CPU.
pip install qdrant-client, fastembed
Define RAG class
from synth_machine.rag import RAG
from qdrant_client import AsyncQdrantClient
from fastembed import TextEmbedding
from typing import List, Optional
from qdrant_client.models import Distance, VectorParams, PointStruct
class Qdrant(RAG):
"""
VectorDB: Qdrant - https://github.com/qdrant/qdrant
Embeddings: FastEmbed - https://github.com/qdrant/fastembed
This provides fast and lightweight on-device CPU embeddings creation and
similarity search using Qdrant in memory.
"""
def __init__(
self,
collection_name: str,
embedding_model: str="BAAI/bge-small-en-v1.5",
embedding_dimensions: int=384,
embedding_threads: int=-1,
qdrant_location: str=":memory:",
):
self.embedding_model = TextEmbedding(
model_name=embedding_model,
threads=embedding_threads
)
self.embedding_dimensions = embedding_dimensions
self.qdrant = AsyncQdrantClient(qdrant_location)
self.collection_name = collection_name
async def create_collection(self) -> bool:
if await self.qdrant.collection_exists(self.collection_name):
return True
else:
return await self.qdrant.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(
size=self.embedding_dimensions, # maps to 'BAAI/bge-small-en-v1.5' model dimensions
distance=Distance.COSINE
)
)
async def embed(self, documents: List[str], metadata: Optional[List[dict]]=None):
if metadata and len(documents) != len(metadata):
raise ValueError("documents and metadata must be the same length")
embedding_list = list(
self.embedding_model.embed(documents)
)
upsert_response = await self.qdrant.upsert(
collection_name=self.collection_name,
points=[
PointStruct(
id=i,
vector=list(vector),
payload=metadata[i]
)
for i, vector in enumerate(embedding_list)
]
)
return upsert_response.status
async def query(self, prompt: str, rag_config: RAGConfig) -> List[dict]:
embedding = next(self.embedding_model.embed([prompt]))
similar_responses = await self.qdrant.search(
collection_name=self.collection_name,
query_vector=embedding,
limit=rag_config.n
)
return [
point.payload for point in similar_responses
]
Now initiate the Qdrant class and provide when defining Synth
.
qdrant = Qdrant(collection_name="tofu_examples")
await qdrant.create_collection()
agent = Synth(
...
rag_runner=Qdrant
)
Store
Tools can return a variety of different objects. Any file created by a tool will automatically go to your agent.store
.
We use ObjectStore for file storage, with ObjectStore(":memory:")
as the default.
To retrieve a file: agent.store.get(file_name)
ObjectStore allowing easy integration to:
- Local file store
- S3
- GCS
- Azure
Example GCS object store
from synth_machine.machine import ObjectStore
agent = Agent(
...
store=ObjectStore("gs://[bucket_name]/[prefix]))
)
User Defined Functions
Any custom functionality can be defined as a user defined function (UDF).
These take Synth.memory
as input and allows you to run custom functionality as part of the synth-machine
.
# Define postprocess function
from synth_machine.user_defined_functions import udf
@udf
def abc_postprocesss(memory):
...
return memory["variable_key"]
agent = Synth(
...
user_defined_functions = {
"abc": abc_postprocess
}
)
Example UDF Transition Config
...
- key: trigger_udf
inputs:
- key: variable_key
outputs:
- key: example_udf
udf: abc
Note: Any non trivial functionality should be a tool and not UDF.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file synth_machine-0.4.3.tar.gz
.
File metadata
- Download URL: synth_machine-0.4.3.tar.gz
- Upload date:
- Size: 32.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.5.0-1021-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7a9e3a62b9da8726f924c04eb70c2c97e2ab4e0f0ec1990cd45c4223c331779 |
|
MD5 | 751a5571600189f279a05131d543cdb7 |
|
BLAKE2b-256 | 0fcf1dc1a057a816edb5328675b4b55828d0fb0b3a9411e21b3f0d9e0819de56 |
File details
Details for the file synth_machine-0.4.3-py3-none-any.whl
.
File metadata
- Download URL: synth_machine-0.4.3-py3-none-any.whl
- Upload date:
- Size: 35.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.5.0-1021-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebfbc079182a8058bf6ded8944926ef75079a98d2c9158c91b107a44e43ba3b7 |
|
MD5 | 0d6a609224b1f9227a72aebeb4d8fc30 |
|
BLAKE2b-256 | be9bb5752459b76378fd114cdedeaa1879dbff31e430093be41eb088a84b116a |