Comprehensive and concise system information querying tool.
Project description
Comprehensive and concise system information querying tool.
The goal is to gather all relevant:
hardware information (processors, accelerators, memory, networks, drives)
static operating system information (name, version, hostname)
runtime information (environment, libraries, system load, etc.)
and provide them in a concise form that’s both machine- and human-readable.
Another important goal is to also be fail-safe, even with unexpected hardware configurations, low-level tool errors and deal with incomplete information.
You can use system-query as a library and as a command-line tool.
Motivation
Where am I running?
One of the main motivations for creating system-query is to assist with answering the question “what is the actual hardware and software configuration of the system I’m using?” regardless of the official specification.
How to rerun this experiment?
The system-query was also created to assist with the computational experiment reproducibility and verification of results. Only if you know exactly where you ran your experiment, you can reason about its results and be able to reproduce them.
Using
Installing system-query doesn’t enable all the features by default. Some of the query functions
will work only on some systems. To attempt installation with all features enables,
run pip3 install system-query[all]. If something brakes, you can narrow down the features
by typing a feature scope instead of all.
You can choose from cpu, gpu, hdd, ram and swap.
E.g. pip3 install system-query[gpu]. You can also select more than one feature
at the same time, e.g. pip3 install system-query[cpu,hdd,ram].
As library
In [1]: import system_query
Usage examples are below and in examples.ipynb.
system_query.query_all()
This will get basic host and OS information and launch most of below functions, and then assemble the results into a single dictionary.
In [2]: system_query.query_all()
Out[2]:
{'host': 'hostname',
'os': 'Linux-6.8.0-47-generic-x86_64-with-glibc2.35',
'cpu': {'brand': 'Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz',
'logical_cores': 12,
'physical_cores': 6,
'clock': 4131.882833333333,
'clock_min': 800.0,
'clock_max': 4500.0,
'cache': {1: 196608, 2: 1572864, 3: 12582912}},
'gpus': [{'brand': 'NVIDIA GeForce RTX 2060',
'memory': 6214516736,
'memory_clock': 7001000,
'compute_capability': 7.5,
'clock': 1200000,
'multiprocessors': 30,
'cores': None,
'warp_size': 32}],
'ram': {'total': 16631603200},
'hdds': {'/dev/sdb': {'size': 0, 'model': '1081C'},
'/dev/sdc': {'size': 0, 'model': '1081C'},
'/dev/sda': {'size': 1953525168, 'model': 'WDC WD10SPZX-24Z'},
'/dev/nvme0n1': {'size': 2000409264, 'model': 'SAMSUNG MZVLB1T0HBLR-000L2'}},
'swap': {'total': 17179865088}}
system_query.query_cpu()
To be able to see details like cache size, clock speed and core counts, install Python packages pint and psutil.
In [3]: system_query.query_cpu()
Out[3]:
{'brand': 'Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz',
'logical_cores': 12,
'physical_cores': 6,
'clock': 4182.955000000001,
'clock_min': 800.0,
'clock_max': 4500.0,
'cache': {1: 196608, 2: 1572864, 3: 12582912}}
system_query.query_gpus()
To be able to see GPUs in the system, make sure you have CUDA installed and install Python package pycuda.
In [4]: system_query.query_gpus()
Out[4]:
[{'brand': 'NVIDIA GeForce RTX 2060',
'memory': 6214516736,
'memory_clock': 7001000,
'compute_capability': 7.5,
'clock': 1200000,
'multiprocessors': 30,
'cores': None,
'warp_size': 32}]
system_query.query_hdds()
To be able to see HDDs in the system, make sure you have libudev installed and install Python package pyudev.
In [5]: system_query.query_hdds()
Out[5]:
{'/dev/sdb': {'size': 0, 'model': '1081C'},
'/dev/sdc': {'size': 0, 'model': '1081C'},
'/dev/sda': {'size': 1953525168, 'model': 'WDC WD10SPZX-24Z'},
'/dev/nvme0n1': {'size': 2000409264, 'model': 'SAMSUNG MZVLB1T0HBLR-000L2'}}
system_query.query_ram()
To be able to see amount of memory, install Python package psutil.
In [6]: system_query.query_ram()
Out[6]: {'total': 16631603200}
When given an optional argument sudo, more information will be shown.
In [7]: system_query.query_ram(sudo=True)
[sudo] password for user: ...
Out[7]:
{'total': 16632750080,
'banks': [{'memory': 8589934592, 'clock': 2667000000},
{'memory': 8589934592, 'clock': 2667000000}]}
system_query.query_software()
This will attempt to gather version information of various common programs, assuming their executables are in system path.
In [8]: system_query.query_software()
Out[8]:
{'gcc': {'path': '/usr/bin/gcc',
'version': 'gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0'},
'g++': {'path': '/usr/bin/g++',
'version': 'g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0'},
'gfortran': {'path': '/usr/bin/gfortran',
'version': 'GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0'},
'clang': {'path': '/usr/bin/clang',
'version': 'Ubuntu clang version 14.0.0-1ubuntu1.1'},
'clang++': {'path': '/usr/bin/clang++',
'version': 'Ubuntu clang version 14.0.0-1ubuntu1.1'},
'python': {'path': '/home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/bin/python',
'version': 'Python 3.11.6',
'packages': {'ipython': {'version': 'ipython==8.26.0'},
'numpy': {'version': 'numpy @ file:///tmp/user/spack-stage/spack-stage-py-numpy-1.26.2-bpjavwbbxmsgiutvjzijlkjf5si5ki2v/spack-src'},
'pandas': {'version': 'pandas==1.5.3'},
'pycuda': {'version': 'pycuda==2024.1'},
'scipy': {'version': 'scipy==1.13.0'}}},
'python3': {'path': '/home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/bin/python3',
'version': 'Python 3.11.6',
'packages': {'ipython': {'version': 'ipython==8.26.0'},
'numpy': {'version': 'numpy @ file:///tmp/user/spack-stage/spack-stage-py-numpy-1.26.2-bpjavwbbxmsgiutvjzijlkjf5si5ki2v/spack-src'},
'pandas': {'version': 'pandas==1.5.3'},
'pycuda': {'version': 'pycuda==2024.1'},
'scipy': {'version': 'scipy==1.13.0'}}},
'python3.10': {'path': '/usr/bin/python3.10',
'version': 'Python 3.10.12',
'packages': {}},
'python3.11': {'path': '/home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/bin/python3.11',
'version': 'Python 3.11.6',
'packages': {'ipython': {'version': 'ipython==8.26.0'},
'numpy': {'version': 'numpy @ file:///tmp/user/spack-stage/spack-stage-py-numpy-1.26.2-bpjavwbbxmsgiutvjzijlkjf5si5ki2v/spack-src'},
'pandas': {'version': 'pandas==1.5.3'},
'pycuda': {'version': 'pycuda==2024.1'},
'scipy': {'version': 'scipy==1.13.0'}}},
'pip': {'path': '/home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/bin/pip',
'version': 'pip 24.2 from /home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/lib/python3.11/site-packages/pip (python 3.11)'},
'pip3': {'path': '/home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/bin/pip3',
'version': 'pip 24.2 from /home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/lib/python3.11/site-packages/pip (python 3.11)'},
'pip3.11': {'path': '/home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/bin/pip3.11',
'version': 'pip 24.2 from /home/user/Software/Spack/opt/spack/linux-ubuntu22.04-skylake/gcc-12.3.0/python-3.11.6-pkgqipsrm2re32eisko6o7xa2xnwwzyh/lib/python3.11/site-packages/pip (python 3.11)'},
'java': {'path': '/usr/lib/jvm/java-11-openjdk-amd64/bin/java',
'version': 'openjdk version "11.0.24" 2024-07-16'},
'ruby': {'path': '/usr/bin/ruby',
'version': 'ruby 3.0.2p107 (2021-07-07 revision 0db68f0233) [x86_64-linux-gnu]'},
'nvcc': {'path': '/usr/bin/nvcc',
'version': 'nvcc: NVIDIA (R) Cuda compiler driver'},
'spack': {'path': '/home/user/Software/Scripts/spack', 'version': None}}
system_query.query_swap()
To be able to see amount of swap space, install Python package psutil.
In [9]: system_query.query_swap()
Out[9]: {'total': 17179865088}
system_query.query_and_export()
This function is for convenience of running the query and outputting the results in a designated format, to a designated location.
In [10]: import pathlib
In [11]: system_query.query_and_export('all', 'json', pathlib.Path('/tmp/system_info.json'))
As command-line tool
Below will run system_query.query_all() and output results to stdout:
$ python3 -m system_query
{'cpu': {'brand': 'Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz',
'cache': {1: 196608, 2: 1572864, 3: 12582912},
'clock': 3685.686166666667,
'clock_max': 4500.0,
'clock_min': 800.0,
'logical_cores': 12,
'physical_cores': 6},
'gpus': [{'brand': 'NVIDIA GeForce RTX 2060',
'clock': 1200000,
'compute_capability': 7.5,
'cores': None,
'memory': 6214516736,
'memory_clock': 7001000,
'multiprocessors': 30,
'warp_size': 32}],
'hdds': {'/dev/nvme0n1': {'model': 'SAMSUNG MZVLB1T0HBLR-000L2',
'size': 2000409264},
'/dev/sda': {'model': 'WDC WD10SPZX-24Z', 'size': 1953525168},
'/dev/sdb': {'model': '1081C', 'size': 0},
'/dev/sdc': {'model': '1081C', 'size': 0}},
'host': 'mbLegion',
'os': 'Linux-6.8.0-47-generic-x86_64-with-glibc2.35',
'ram': {'total': 16631603200},
'swap': {'total': 17179865088}}
Please use -h to see usage information:
$ python3 -m system_query -h
usage: system_query [-h] [-s {all,cpu,gpu,ram,swap}] [-f {raw,json}]
[-t TARGET] [--version]
Comprehensive and concise system information tool. Query a given hardware
and/or software scope of your system and get results in human- and machine-
readable formats.
options:
-h, --help show this help message and exit
-s {all,cpu,gpu,ram,swap}, --scope {all,cpu,gpu,ram,swap}
Scope of the query (default: all)
-f {raw,json}, --format {raw,json}
Format of the results of the query. (default: raw)
-t TARGET, --target TARGET
File path where to write the results of the query.
Special values: "stdout" and "stderr" to write to
stdout and stderr, respectively. (default: stdout)
--version show program's version number and exit
Copyright 2017-2025 by the contributors, Apache License 2.0,
https://github.com/mbdevpl/system-query
Requirements
Python version 3.9 or later.
Python libraries as specified in requirements.txt. Recommended (but optional) packages are listed in requirements_optional.txt.
Building and running tests additionally requires packages listed in requirements_test.txt.
Tested on Linux, macOS and Windows.
Additionally, for all features to work you should have the following libraries installed in your system:
CUDA
libudev
Contributors
Aleksandr Drozd
Emil Vatai
Mateusz Bysiek
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file system_query-0.4.1.tar.gz.
File metadata
- Download URL: system_query-0.4.1.tar.gz
- Upload date:
- Size: 25.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
58e9a010f1911989d6266493dfcf6e03945b37dbd9693348809f9550437343af
|
|
| MD5 |
27d44bb40a74b5daa80e12ff814909f5
|
|
| BLAKE2b-256 |
0879baf1e875a319624b4db8a8eae16e514977506aed4f25ecbf8de871f0d88b
|
File details
Details for the file system_query-0.4.1-py3-none-any.whl.
File metadata
- Download URL: system_query-0.4.1-py3-none-any.whl
- Upload date:
- Size: 21.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a7de8eb4b955032c167db0d58f5f421b2f456bc23725bdee8ce5136ee4752148
|
|
| MD5 |
381fd75c03002bf1db2f9dcefa8ea0c0
|
|
| BLAKE2b-256 |
56ba47cf144e077476d64680a40104fd852086a9ae614365130223de38a0ac16
|