Skip to main content

No project description provided

Project description

fifteen

shields.io shields.io

(DBA table_fifth)

This is a research fork of the original library

Experimental library for quick quintet tallying, useful when you have a lot of quintets that somehow you don't want to count yourself.

Usage

Binary wheels are provided on PyPI for Python starting from 3.7, but note that PyPy is not supported (yet).

python3 -m pip install table-five

API

TreeSet

A treeset is an efficient (i.e., fast parsing) list of tree topologies. The construction is $O(k n \lg n)$ where $k$ is the number of trees and $n$ the number of taxa. The log factor is due to the LCA data structure initialization.

from table_five import TreeSet
trees = TreeSet("path_to_newline_delimited_newicks.tre")

Quintet Counting

The major API is tally_single_quintet returning a list of length 15 containing the empirical counts of the 15 ADR unrooted quintet topology among the tree-set in $O(k)$ time:

# get counts of the ADR unrooted quintet topologies on taxa '1','2','3','4','5'. Taxa order matters.
treeset.tally_single_quintet(('1','2','3','4','5'))
# obviously you might want to convert it to numpy arrays

# normalize by the number of genes in the tree-set
new_tree_dist = np.asarray(treeset.tally_single_quintet(q_taxa)) / len(treeset)

Development and Building

After installing the Rust toolchain and Maturin, see the following commands:

# build the library
maturin build
# installing it locally
maturin develop

See the Maturin documentation for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

table_fifth-0.0.4.tar.gz (44.7 kB view details)

Uploaded Source

Built Distributions

table_fifth-0.0.4-cp37-abi3-win_amd64.whl (281.1 kB view details)

Uploaded CPython 3.7+ Windows x86-64

table_fifth-0.0.4-cp37-abi3-win32.whl (274.1 kB view details)

Uploaded CPython 3.7+ Windows x86

table_fifth-0.0.4-cp37-abi3-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ x86-64

table_fifth-0.0.4-cp37-abi3-musllinux_1_2_i686.whl (1.4 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ i686

table_fifth-0.0.4-cp37-abi3-musllinux_1_2_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ ARMv7l

table_fifth-0.0.4-cp37-abi3-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ ARM64

table_fifth-0.0.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

table_fifth-0.0.4-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARMv7l

table_fifth-0.0.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

table_fifth-0.0.4-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.5+ i686

table_fifth-0.0.4-cp37-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (628.1 kB view details)

Uploaded CPython 3.7+ macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

table_fifth-0.0.4-cp37-abi3-macosx_10_7_x86_64.whl (320.4 kB view details)

Uploaded CPython 3.7+ macOS 10.7+ x86-64

File details

Details for the file table_fifth-0.0.4.tar.gz.

File metadata

  • Download URL: table_fifth-0.0.4.tar.gz
  • Upload date:
  • Size: 44.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for table_fifth-0.0.4.tar.gz
Algorithm Hash digest
SHA256 de0600242fcfbc874385dde11cfcb4608187b4598249fffb6fcae6f134465159
MD5 7a741fffa228d480121903cce58d293a
BLAKE2b-256 2d94a9939a30db40c93f1ce8802344563cf249007b3cf5e51c1e869951af7486

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 d93e76821f8413891ca90012f92489af12c8ed30929831441bc96bed5f2e5694
MD5 2e7ce5e23dc8348d86c5301bded49678
BLAKE2b-256 f40ccd0c553332d46bc16b2d6869043bc14497c767848f516f2bb5b8939c1f4c

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-win32.whl.

File metadata

  • Download URL: table_fifth-0.0.4-cp37-abi3-win32.whl
  • Upload date:
  • Size: 274.1 kB
  • Tags: CPython 3.7+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-win32.whl
Algorithm Hash digest
SHA256 e108016367a53fd23f90031ac816dc742bde69edfbab5bf6b5b91c74b247c8c9
MD5 9c3f44c30d072d9b202e39d56216a21f
BLAKE2b-256 ae7c6e6c0388c41fc63f7906096008eea84e7d1c9988f765ef306583b7fdbe22

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aa87418c912072ec8da2c070dfb41ff181820771d85fe55ded957f2ea38ca877
MD5 24c97b6d087d8daf118c921b3b496fc8
BLAKE2b-256 3392d8d505aa3a31f72f53c421311a858b836bf3ec6e8295ce6e529ffba93aa7

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4149d4a149bf62295246e8f2835ca7d01d2dd6e71954003bf960278ab6a0237f
MD5 3c137f952b0f54ff3afd27bd1dd8e200
BLAKE2b-256 6eca673ea7440d153d96d206b2ecad74ca8964fc0df71e19c8f290cc4513ce0d

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 da6a86517f71fa23360104eeddadc6f2ac1996a83ab9140949f68fae7e1019c8
MD5 1f15ff2fb48c3efb644d1eb0b8a0991b
BLAKE2b-256 8ec89b62b527bf6c72221c93803059cbb94d189b01cd4290c01a1641af250c84

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8e95e6c74fcd461fd383fef98e63284c7fe745b8b9b521a2979346060adde1af
MD5 77cc3daf4912963f8fbe44d0784a1a62
BLAKE2b-256 2a4ea48c354de317513b3569ddde0e6f01f3d366e3a4e91395c545a5f7efe2e0

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92f16e135cf262ca3ab3cd7d8c2931c058988bb670b26bece08b58244102cd66
MD5 bf1a20377a43fd36619dc7d0970454b8
BLAKE2b-256 6d5a3800611104e648574c6482c1ed4eec8d31bbf1a08015ba5c634e97988880

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c100f775dbaf3bb2d99a5e82e0c243a7dc94877e2d9f0d6249527ec918544bde
MD5 9ebdd3eb0fec495cd881513ff1f8b6da
BLAKE2b-256 933c92fab1071f606f3834c37c94672f4554e40eff7890cd60f9257bb3224d66

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6501cc6e4fc38f43084012f07b569764c7648382cfba0d8753bce4f50ba3a686
MD5 7f27201fbf7b9b64378a1a44c094f830
BLAKE2b-256 132e521ba9f7e20ed3c117f74c506510c14e29cac1c46949686eb2575b91185f

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5b09f316639972081bdc2cd047380dc591d2a614d0c62704b486fb9add942c6e
MD5 ddcd25287f1230dcd3d4634f33cbca89
BLAKE2b-256 87d6ba1b2d8d9a8c8abd7eb749d4ee06eab698485b30cd72fb1bb2f094422a02

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7618d93d7df32ce6b29878d7acf6c5d9a7b1a95b9c3cab393e289c5482ecac27
MD5 ea7a740b514ca13615f976e37cc0f749
BLAKE2b-256 4005d1d0780bb0ab3bcc359ec97b8be62d982a7da027f044cdce9ec108564e68

See more details on using hashes here.

File details

Details for the file table_fifth-0.0.4-cp37-abi3-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for table_fifth-0.0.4-cp37-abi3-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a2668eee5adfbc344d8f067f4a9fab21d4a4317a7c2a78e215877ef37cbaf1e3
MD5 10d91dc3a337fdf787e50e9b2211171e
BLAKE2b-256 bd282c27e89b0687d78c1cd491322d1f5708a248a5fcdf0513c4073da6827bca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page