Skip to main content

No project description provided

Project description

fifteen

(DBA table_five)

Experimental library for quick quintet tallying, useful when you have a lot of quintets that somehow you don't want to count yourself.

Usage

Binary wheels are provided on PyPI

python3 -m pip install table_five

API

TreeSet

A treeset is an efficient (i.e., fast parsing) list of tree topologies. The construction is $O(k n \lg n)$ where $k$ is the number of trees and $n$ the number of taxa due to the LCA data structure initialization.

from table_five import TreeSet
trees = TreeSet("path_to_newline_delimited_newicks.tre")

Quintet Counting

The major API is tally_sinlge_quintet returning a list of length 15 containing the empirical counts of the 15 ADR unrooted quintet topology among the tree-set in $O(k)$ time:

# get counts of the ADR unrooted quintet topologies on taxa '1','2','3','4','5'. Taxa order matters.
treeset.tally_single_quintet(('1','2','3','4','5'))
# obviously you might want to convert it to numpy arrays

# normalize by the number of genes in the tree-set
new_tree_dist = np.asarray(treeset.tally_single_quintet(q_taxa)) / len(treeset)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

table_five-0.0.2.tar.gz (28.0 kB view details)

Uploaded Source

Built Distributions

table_five-0.0.2-cp37-abi3-win_amd64.whl (238.9 kB view details)

Uploaded CPython 3.7+ Windows x86-64

table_five-0.0.2-cp37-abi3-win32.whl (230.2 kB view details)

Uploaded CPython 3.7+ Windows x86

table_five-0.0.2-cp37-abi3-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ x86-64

table_five-0.0.2-cp37-abi3-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ i686

table_five-0.0.2-cp37-abi3-musllinux_1_2_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ ARMv7l

table_five-0.0.2-cp37-abi3-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ ARM64

table_five-0.0.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

table_five-0.0.2-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARMv7l

table_five-0.0.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

table_five-0.0.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.5+ x86-64

table_five-0.0.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.5+ i686

table_five-0.0.2-cp37-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (504.9 kB view details)

Uploaded CPython 3.7+ macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

table_five-0.0.2-cp37-abi3-macosx_10_7_x86_64.whl (258.0 kB view details)

Uploaded CPython 3.7+ macOS 10.7+ x86-64

File details

Details for the file table_five-0.0.2.tar.gz.

File metadata

  • Download URL: table_five-0.0.2.tar.gz
  • Upload date:
  • Size: 28.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for table_five-0.0.2.tar.gz
Algorithm Hash digest
SHA256 9752b8b51db98306e56476735b627c4ea36f1a3e69895519217bcec0a68fb624
MD5 1880255577a417d785fdfbbd96f352ad
BLAKE2b-256 c994a600efc92a11e911a232e38a8704f39941e801d8d81e681cfde3b5431b7c

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-win_amd64.whl.

File metadata

  • Download URL: table_five-0.0.2-cp37-abi3-win_amd64.whl
  • Upload date:
  • Size: 238.9 kB
  • Tags: CPython 3.7+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for table_five-0.0.2-cp37-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 4bf7add46528cbaff926f3b1b37cb37d9cb9bc94503ebbe43e864425b6d93463
MD5 5ea84ae82da2089e9202c884dc3634e8
BLAKE2b-256 fc46fcc9223f0dc61b180c70a3fdcb44781a3f6fa4414eddbc126a0a697bf784

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-win32.whl.

File metadata

  • Download URL: table_five-0.0.2-cp37-abi3-win32.whl
  • Upload date:
  • Size: 230.2 kB
  • Tags: CPython 3.7+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for table_five-0.0.2-cp37-abi3-win32.whl
Algorithm Hash digest
SHA256 de6810457247119b0d6d058bdb2c07aefb17263e448e7c4e4026512e846e313d
MD5 feb9522d89f16e5cb09ab549eb780d83
BLAKE2b-256 858b7bace9285084478564aebefbc09c5b8144b20cf2d7cc93cfaf6cd8865060

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5fafeb72d935e9cbfb3986edc1ce77a3fec5705eb544799d24bed9d010b6f293
MD5 56afc55b6c662bff435dd5386657b130
BLAKE2b-256 7b76c5351e6e03101d942a92d705fb3d26f3a1b63f36ae5519009c4c0bbb00d3

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4c0ea303619f2618ba83bc328f64ad1fe8dca2f532c1b1bfe068835a6561003c
MD5 d3bf29630a4614b747cb8d34c090aca6
BLAKE2b-256 2e1f83f13e6fa5239b63110449925ad28c408680b4e310011bd4a3b4dbd859c9

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 b5bb88fa333bc6105666c330630091e7e5551b30f232736e786cda7ac1c89f17
MD5 9c037508eee150e78455b93984328b04
BLAKE2b-256 50e47aa3fd6c4bfa1f7e932bc93b1490fe97d50f9d763a07e04e870914f3a405

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c21e9251f7ec045322f592cc196a1866c03d8db069e177431f0ccdc1598d3432
MD5 b2ab56d44dbcf24eb2a1a8932ce0a2ab
BLAKE2b-256 6cd15fbbbebbf289f47979299b9162ca354612c071f7f8ca2a4a1822d327d766

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62e7ca2cc762c0dc84664599f5c075c910feda3592234e2aeedd6dd4ff4b8fdd
MD5 f183337d4af5f8422ea708cdfe7c32d8
BLAKE2b-256 235327907ecf2816371a52717353aa9b8a25285dc2ac5fe74be0b99c91145ff4

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 79cc002d28497931ad30c7f14b27e38c9d7970bd2d6115e5487e9d27a3248df1
MD5 f91c4a04af6749c07d1ec9250fa3f596
BLAKE2b-256 03a47ffcc6e7322993c37e2443b213be861eac2ff3f242901112aa9df0646bc1

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 afc6f726bccfb446ed87b3111f6bd3ea28eaca79176790c8ee9f79579e0dee50
MD5 ce9026e219f36b794f57dd08944d282d
BLAKE2b-256 9442c12bc04a436dca94edb2a7a2cadee50b1aea63c826c0802210f77f884745

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ccf3e0a9ff68261cf87fc01c5e23865cb0b4d749008817b4ac8b3b8cb88addb7
MD5 c26615200d389a78bc48e3396bcf6544
BLAKE2b-256 7597ebcf997459efd4246f22108c26b6932873aa785f3c4023cbc224d7642b8d

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 868543d14a0ed3472e24b7cd46233322dc782beca38b3a7a0e47e7f0e16fdc70
MD5 bccdf8f1ee68d28db04304a7cafade38
BLAKE2b-256 47e219b2fb7dd54231d66766aadcaeca9fd1edaceb1765679c535ffbb940439d

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 53b90ac5229a1c53607ae1f6f4463001a0bb60b71b401a6728af01803c06babb
MD5 e9e94edb21b14c74a5ac15ddad95174e
BLAKE2b-256 aa154b7456f347849932f3b30c1e62e82d2b5d832a4b395cc4674ea5a2b3d4a7

See more details on using hashes here.

File details

Details for the file table_five-0.0.2-cp37-abi3-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for table_five-0.0.2-cp37-abi3-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3b3e018cba0fe36d08ff9275017a0943c901187fd27a68592dd9c86789d71766
MD5 120d807b72d1f96910bf5abce7c8c117
BLAKE2b-256 fc41a43c7479c066ab581c212360f924f35c31d4eb0ebacec035bfee4825c391

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page