CLI data plumbing tool
Project description
tableconv
tableconv is a prototype of software to convert tabular data from any format to any format.
Install
pipx install tableconv
(or: pip install tableconv
)
Examples
Basic Conversion
Convert JSON to CSV
tableconv test.json -o test.csv
Convert CSV to JSON
tableconv test.csv -o test.json
Dump a Postgres table as JSON
tableconv postgresql://192.168.0.10:5432/test_db/my_table -o my_table.json
Display a parquet file's data in a human-readable format
tableconv test.parquet -o ascii:-
Convert CSV to a Markdown Table
tableconv test.csv -o md:-
Data Transformation
Dump the first 100 rows of a postgres table as JSON
tableconv postgresql://192.168.0.10:5432/test_db -q 'SELECT * FROM my_table ORDER BY id LIMIT 100' -o my_table.json
Copy a few columns from one CSV into a new CSV. (in general, all functionality works on all of the supported data formats. So you can of course query with SQL on an Oracle database but it's also supported to query with SQL on JSON, SQL on Excel, and, here SQL on CSV)
tableconv test.csv -q 'SELECT time, name FROM data ORDER BY time DESC' -o output.csv
Append a few columns from a CSV into MySQL
tableconv test.csv -q 'SELECT time, name FROM data ORDER BY time DESC' -o mysql://localhost:3306/test_db/my_table?if_exists=append
Extract a report from a SQLite database into a new Google Spreadsheet
tableconv sqlite3://my_db.db -q 'SELECT name, COUNT(*) from occurrences ORDER BY 2 DESC LIMIT 10' -o "gsheets://:new:/?name=top_occurrences_$(date +'%Y_%m_%d')"
Interactive Mode
Launch an interactive SQL shell to inspect data from a CSV file in the terminal
tableconv test.csv -i
Psuedo-Tabular Data Operations
Arrays: Arrays can be thought of as one dimensional tables, so tableconv has strong support for array formats too. Here is an example of converting a copy/pasted newline-deliminated list into a list in the Python list syntax.
pbpaste | tableconv list:- -o pylist:-
Or in YAML's sequence syntax:
pbpaste | tableconv list:- -o yamlsequence:-
Or as a full single-dimensional CSV table:
pbpaste | tableconv list:- -o csv:-
Details
As a prototype, tableconv is usable as a quick and dirty CLI ETL tool for converting data between any of the formats, or usable for performing basic bulk data transformations and joins defined in a unified language (SQL) but operating across disparate data in wildly different formats. That is the immediate value proposition of tableconv, but it was created within the mental framework of a larger vision: The tableconv vision of computing is that all software fundamentally interfaces via data tables; that all UIs and APIs can be interpreted as data frames or data tables. Instead of requiring power users to learn interface after interface and build their own bespoke tooling to extract and manipulate the data at scale in each interface, the world needs a highly interoperable operating system level client for power users to directly interact with, join, and manipulate the data with SQL (or similar) using the universal "table" abstraction provided in a consistent UI across each service. Tableconv is that tool. It is meant to have adapters written to support any/all services and data formats.
However, this is just a prototype. The software is slow in all ways and memory+cpu intensive. It has no streaming support and loads all data into memory before converting it. Its most efficient adapters cannot handle tables over 10 million cells, and the least efficient cannot handle over 100000 cells. Schemas can migrate inconsistently depending upon the data available. It has experimental features that will not work reliably, such as schema management, the unorthodox URL scheme, and special array (1 dimensional table) support. All parts of the user interface are expected to be overhauled at some point. The code quality is mediocre, inconsistent, and bug-prone. Most obscure adapter options are untested. It has no story or documentation for service authentication, aside from SQL DBs. Lastly, the documentation is so weak that no documentation exists documenting the standard options available for adapters adapter, nor documentation of any adapter-specific options.
Usage
usage: tableconv SOURCE_URL [-q QUERY_SQL] [-o DEST_URL]
positional arguments:
SOURCE_URL Specify the data source URL.
options:
-h, --help show this help message and exit
-q SOURCE_QUERY, -Q SOURCE_QUERY, --query SOURCE_QUERY
Query to run on the source. Even for non-SQL datasources (e.g. csv or
json), SQL querying is still supported, try `SELECT * FROM data`.
-F INTERMEDIATE_FILTER_SQL, --filter INTERMEDIATE_FILTER_SQL
Filter (i.e. transform) the input data using a SQL query operating on the
dataset in memory using DuckDB SQL.
-o DEST_URL, --dest DEST_URL, --out DEST_URL
Specify the data destination URL. If this destination already exists, be
aware that the default behavior is to overwrite.
-i, --interactive Enter interactive REPL query mode.
--open Open resulting file/url in the operating system desktop environment. (not
supported for all destination types)
--schema SCHEMA_COERCION, --coerce-schema SCHEMA_COERCION
Coerce source schema according to a schema definition. (WARNING:
experimental feature)
--restrict-schema Exclude all columns not included in the SCHEMA_COERCION definition.
(WARNING: experimental feature)
-v, --verbose, --debug
Show debug details, including API calls and error sources.
--version Show version number and exit
--quiet Only display errors.
--print, --print-dest
Print resulting URL/path to stdout, for chaining with other commands.
--daemon Tableconv startup time (python startup time) is slow. To mitigate that,
you can first run tableconv as a daemon, and then all future invocations
(while daemon is still alive) will be fast. (WARNING: experimental
feature)
supported url schemes:
ascii:- (dest only)
asciibox:- (dest only)
asciifancygrid:- (dest only)
asciigrid:- (dest only)
asciilite:- (dest only)
asciipipe:- (dest only)
asciiplain:- (dest only)
asciipresto:- (dest only)
asciipretty:- (dest only)
asciipsql:- (dest only)
asciisimple:- (dest only)
awsathena://eu-central-1
awsdynamodb://eu-central-1/example_table (source only)
awslogs://eu-central-1//aws/lambda/example-function (source only)
csa:-
example.csv
example.dta
example.feather
example.fixedwidth
example.fwf
example.h5
example.hdf5
example.html
example.json
example.jsonl
example.jsonlines
example.ldjson
example.ndjson
example.numbers (source only)
example.orc (source only)
example.parquet
example.py
example.python
example.tsv
example.xls
example.xlsx
example.yaml
example.yml
gsheets://:new:
jiracloud://mycorpname (source only)
jiraformat:- (dest only)
jsonarray:-
latex:- (dest only)
list:-
markdown:- (dest only)
md:- (dest only)
mediawikiformat:- (dest only)
moinmoinformat:- (dest only)
mssql://127.0.0.1:5432/example_db
mysql://127.0.0.1:5432/example_db
nestedlist:- (source only)
oracle://127.0.0.1:5432/example_db
postgis://127.0.0.1:5432/example_db
postgres://127.0.0.1:5432/example_db
postgresql://127.0.0.1:5432/example_db
pylist:-
pythonlist:-
rst:- (dest only)
smartsheet://SHEET_ID (source only)
sql_values:- (dest only)
sqlite3:///tmp/example.db
sqlite:///tmp/example.db
sumologic://?from=2021-03-01T00:00:00Z&to=2021-05-03T00:00:00Z (source only)
tex:- (dest only)
yamlsequence:-
help & support:
https://github.com/personalcomputer/tableconv/issues
Python API
Quickstart Example: Basic API usage: Replicating a typical CLI command using the API
In [1]: import tableconv
In [2]: # tableconv test.csv -q 'SELECT time, name FROM data ORDER BY time DESC' -o gsheets://:new:/?name=test
In [3]: tableconv.load_url('test.csv', query='SELECT time, name FROM data ORDER BY time DESC').dump_to_url('gsheets://:new:', params={'name': 'test'})
Quickstart Example: More advanced API usage: Importing in data from an arbitrary URL to a python dictionary
In [1]: import tableconv
In [2]: tableconv.load_url('postgresql://localhost:5432/test_db/cities').as_dict_records()
Out[2]:
[
{'LatD': 41, 'LatM': 5, 'LatS': 59, 'NS': 'N', 'LonD': 80, 'LonM': 39, 'LonS': 0, 'EW': 'W', 'City': 'Youngstown', 'State': 'OH'},
{'LatD': 42, 'LatM': 52, 'LatS': 48, 'NS': 'N', 'LonD': 97, 'LonM': 23, 'LonS': 23, 'EW': 'W', 'City': 'Yankton', 'State': 'SD'},
[...]
]
SDK API Reference Documentation
(Reference documentation pending)
Main Influences
- odo
- Singer
- ODBC/JDBC
- osquery
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tableconv-1.9944.20230808.tar.gz
.
File metadata
- Download URL: tableconv-1.9944.20230808.tar.gz
- Upload date:
- Size: 46.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45a8843dd515b2d44a8367dc8315033b93f2955fdac48063bdffe2cc2902ca7a |
|
MD5 | dd8e2a3b49c98ab1b95c99fe4fea3cca |
|
BLAKE2b-256 | 4f9ba33c7d7dc23920a1d7c96f0171c9c7dda27f5ab1ed4b8cf2137f8b97f98a |
File details
Details for the file tableconv-1.9944.20230808-py3-none-any.whl
.
File metadata
- Download URL: tableconv-1.9944.20230808-py3-none-any.whl
- Upload date:
- Size: 55.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43b94ac22ac721deaf8f2c3959b15939b4e5f6d553147f1345831a862984f587 |
|
MD5 | 72c6e3c1038bed7c51c38b030ec5b493 |
|
BLAKE2b-256 | 0daeb89fbf898a0d070cf7cc09c4dbc00455bc2fcde8f244966bc6274a4952db |