Skip to main content

Table One

Project description

https://travis-ci.org/tompollard/tableone.svg?branch=master

tableone is a package for researchers who need to create Table 1, summary statistics for a patient population. It was inspired by the R package of the same name by Yoshida and Bohn. A demo Jupyter Notebook is available at: https://github.com/tompollard/tableone/blob/master/tableone.ipynb

Installation

The distribution is hosted on PyPI and directly installable via pip without needing to clone or download this repository. To install the package from PyPI, run the following command in your terminal:

pip install tableone

Example

  1. Import libraries:

    from tableone import TableOne
    import pandas as pd
  2. Load sample data into a pandas dataframe:

    url="https://raw.githubusercontent.com/tompollard/data/master/primary-biliary-cirrhosis/pbc.csv"
    data=pd.read_csv(url)
  3. List of columns containing continuous variables:

    convars = ['time','age','bili','chol','albumin','copper',
           'alk.phos','ast','trig','platelet','protime']
  4. List of columns containing categorical variables:

    catvars = ['status', 'ascites', 'hepato', 'spiders', 'edema',
           'stage', 'sex']
  5. Optionally, a categorical variable for stratification and a list of non-normal variables:

    strat = 'trt'
    nonnormal = ['bili']
  6. Create an instance of TableOne with the input arguments:

    mytable = TableOne(data, convars, catvars, strat, nonnormal)
  7. Type the name of the instance in an interpreter:

    mytable
  8. …which prints the following table to screen:

    Stratified by trt
                           1.0                2.0
    ---------------------  -----------------  -----------------
    n                      158                154
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)
    age (mean (std))       51.42 (11.01)      48.58 (9.96)
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)
    status (n (%))
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  9. Compute p values by setting the pval argument to True. The name of the test that was used is also displayed:

    mytable = TableOne(data, convars, catvars, strat, nonnormal, pval=True)
  10. …which prints:

    Stratified by trt
                           1.0                2.0                pval    testname
    ---------------------  -----------------  -----------------  ------  --------------
    n                      158                154
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)  0.883   One_way_ANOVA
    age (mean (std))       51.42 (11.01)      48.58 (9.96)       0.018   One_way_ANOVA
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]   0.842   Kruskal-Wallis
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)    0.748   One_way_ANOVA
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)        0.874   One_way_ANOVA
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)      0.999   One_way_ANOVA
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)  0.747   One_way_ANOVA
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)     0.460   One_way_ANOVA
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)     0.886   One_way_ANOVA
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)     0.555   One_way_ANOVA
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)       0.197   One_way_ANOVA
    status (n (%))                                               0.894   Chi-squared
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))                                              0.567   Chi-squared
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))                                               0.088   Chi-squared
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))                                              0.985   Chi-squared
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))                                                0.877   Chi-squared
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))                                                0.201   Chi-squared
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))                                                  0.421   Chi-squared
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  11. Tables can be exported to file in various formats, including LaTeX, Markdown, CSV, and HTML. Files are exported by calling the to_format methods. For example, mytable can be exported to a CSV named ‘mytable.csv’ with the following command:

    mytable.to_csv('mytable.csv')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableone-0.2.1.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

tableone-0.2.1-py2.py3-none-any.whl (9.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tableone-0.2.1.tar.gz.

File metadata

  • Download URL: tableone-0.2.1.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tableone-0.2.1.tar.gz
Algorithm Hash digest
SHA256 8634eb9b0e0da246c732bf4d02b08e9df9c448e90905022e127d79c4eeb8eb03
MD5 983ad0f189398b23cfb0fd53fa56d901
BLAKE2b-256 5c5f862b107025a02bf795d3c1486d797c2e29fb3ec7cffd9cda2e9925592828

See more details on using hashes here.

File details

Details for the file tableone-0.2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for tableone-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e0e0cc3761d2f98f7462b55a2ebadbdc234940141034cdf1a6747eb4ed0263e0
MD5 b8b660a6a4020c7c675cc164e24f2e10
BLAKE2b-256 84ddca7888111908fff0b3672c593fd1cfab9af0710dc4b11a6de491653fe94b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page