Skip to main content

Table One

Project description

https://travis-ci.org/tompollard/tableone.svg?branch=master

tableone is a package for researchers who need to create Table 1, summary statistics for a patient population. It was inspired by the R package of the same name by Yoshida and Bohn. A demo Jupyter Notebook is available at: https://github.com/tompollard/tableone/blob/master/tableone.ipynb

Installation

The distribution is hosted on PyPI and directly installable via pip without needing to clone or download this repository. To install the package from PyPI, run the following command in your terminal:

pip install tableone

Example

  1. Import libraries:

    from tableone import TableOne
    import pandas as pd
  2. Load sample data into a pandas dataframe:

    url="https://raw.githubusercontent.com/tompollard/data/master/primary-biliary-cirrhosis/pbc.csv"
    data=pd.read_csv(url)
  3. List of columns containing continuous variables:

    convars = ['time','age','bili','chol','albumin','copper',
           'alk.phos','ast','trig','platelet','protime']
  4. List of columns containing categorical variables:

    catvars = ['status', 'ascites', 'hepato', 'spiders', 'edema',
           'stage', 'sex']
  5. Optionally, a categorical variable for stratification and a list of non-normal variables:

    strat = 'trt'
    nonnormal = ['bili']
  6. Create an instance of TableOne with the input arguments:

    mytable = TableOne(data, convars, catvars, strat, nonnormal)
  7. Type the name of the instance in an interpreter:

    mytable
  8. …which prints the following table to screen:

    Stratified by trt
                           1.0                2.0
    ---------------------  -----------------  -----------------
    n                      158                154
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)
    age (mean (std))       51.42 (11.01)      48.58 (9.96)
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)
    status (n (%))
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  9. Compute p values by setting the pval argument to True. The name of the test that was used is also displayed:

    mytable = TableOne(data, convars, catvars, strat, nonnormal, pval=True)
  10. …which prints:

    Stratified by trt
                           1.0                2.0                pval    testname
    ---------------------  -----------------  -----------------  ------  --------------
    n                      158                154
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)  0.883   One_way_ANOVA
    age (mean (std))       51.42 (11.01)      48.58 (9.96)       0.018   One_way_ANOVA
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]   0.842   Kruskal-Wallis
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)    0.748   One_way_ANOVA
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)        0.874   One_way_ANOVA
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)      0.999   One_way_ANOVA
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)  0.747   One_way_ANOVA
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)     0.460   One_way_ANOVA
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)     0.886   One_way_ANOVA
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)     0.555   One_way_ANOVA
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)       0.197   One_way_ANOVA
    status (n (%))                                               0.894   Chi-squared
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))                                              0.567   Chi-squared
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))                                               0.088   Chi-squared
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))                                              0.985   Chi-squared
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))                                                0.877   Chi-squared
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))                                                0.201   Chi-squared
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))                                                  0.421   Chi-squared
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  11. Tables can be exported to file in various formats, including LaTeX, Markdown, CSV, and HTML. Files are exported by calling the to_format methods. For example, mytable can be exported to a CSV named ‘mytable.csv’ with the following command:

    mytable.to_csv('mytable.csv')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableone-0.2.2.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

tableone-0.2.2-py2.py3-none-any.whl (9.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tableone-0.2.2.tar.gz.

File metadata

  • Download URL: tableone-0.2.2.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tableone-0.2.2.tar.gz
Algorithm Hash digest
SHA256 c79ccdb16c1fe61120d99993476f8568479527064c370dbcf9d9957ecc1e3039
MD5 fdf2ba66d90c8e8d49e86d8f19e642ed
BLAKE2b-256 46d44b5627ad451fe1ba2378d50d9af6f53d04bc369ffcafde38857db7dab98b

See more details on using hashes here.

File details

Details for the file tableone-0.2.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for tableone-0.2.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 595c7b5c4ffc7c3da7e619d688bccd3c4a2aca7a81b7f88868283e2b2d9b7e81
MD5 53889cbe68b334ec6c2289145cbae514
BLAKE2b-256 14be0f0b4615681016e82b2448a640d8b7076363a24e2909c050cbd725197dc3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page