Skip to main content

TableOne

Project description

https://travis-ci.org/tompollard/tableone.svg?branch=master https://zenodo.org/badge/DOI/10.5281/zenodo.837898.svg https://anaconda.org/conda-forge/tableone/badges/installer/conda.svg Documentation Status

tableone is a package for creating “Table 1” summary statistics for a patient population. It was inspired by the R package of the same name by Yoshida and Bohn.

Documentation

Documentation is available on readthedocs. An executable demonstration of the package is available on GitHub as a Jupyter Notebook.

Suggested citation

If you use tableone in your study, please cite the following paper:

Tom J Pollard, Alistair E W Johnson, Jesse D Raffa, Roger G Mark;
tableone: An open source Python package for producing summary statistics
for research papers, JAMIA Open, Volume 1, Issue 1, 1 July 2018, Pages 26–31,
https://doi.org/10.1093/jamiaopen/ooy012

Download the BibTex file from: https://academic.oup.com/jamiaopen/downloadcitation/5001910?format=bibtex

A note for users of tableone

While we have tried to use best practices in creating this package, automation of even basic statistical tasks can be unsound if done without supervision. We encourage use of tableone alongside other methods of descriptive statistics and, in particular, visualization to ensure appropriate data handling.

It is beyond the scope of our documentation to provide detailed guidance on summary statistics, but as a primer we provide some considerations for choosing parameters when creating a summary table in our documentation.

Guidance should be sought from a statistician when using `tableone` for a research study, especially prior to submitting the study for publication.

Installation

To install the package with pip, run:

pip install tableone

To install this package with conda, run:

conda install -c conda-forge tableone

Example

  1. Import libraries:

    from tableone import TableOne
    import pandas as pd
  2. Load sample data into a pandas dataframe:

    url="https://raw.githubusercontent.com/tompollard/data/master/primary-biliary-cirrhosis/pbc.csv"
    data=pd.read_csv(url)
  3. Optionally, a list of columns to be included in Table 1:

    columns = ['age','bili','albumin','ast','platelet','protime',
           'ascites','hepato','spiders','edema','sex', 'trt']
  4. Optionally, a list of columns containing categorical variables:

    categorical = ['ascites','hepato','edema','sex','spiders','trt']
  5. Optionally, a categorical variable for stratification and a list of non-normal variables:

    groupby = 'trt'
    nonnormal = ['bili']
  6. Create an instance of TableOne with the input arguments:

    mytable = TableOne(data, columns, categorical, groupby, nonnormal)
  7. Type the name of the instance in an interpreter:

    mytable
  8. …which prints the following table to screen:

    Stratified by trt
                           1.0                2.0                  isnull
    ---------------------  -----------------  -----------------  --------
    n                      158                154                     106
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)         0
    age (mean (std))       51.42 (11.01)      48.58 (9.96)              0
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]          0
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)         134
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)               0
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)           108
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)       106
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)          106
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)          136
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)           11
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)              2
    status (n (%))                                                      0
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))                                                   106
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))                                                    106
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))                                                   106
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))                                                       0
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))                                                       6
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))                                                         0
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  9. Compute p values by setting the pval argument to True:

    mytable = TableOne(data, columns, categorical, groupby, nonnormal, pval=True)
  10. …which prints:

    Stratified by trt
                           1.0                2.0                  isnull  pval    testname
    ---------------------  -----------------  -----------------  --------  ------  --------------
    n                      158                154                     106
    time (mean (std))      2015.62 (1094.12)  1996.86 (1155.93)         0  0.883   One_way_ANOVA
    age (mean (std))       51.42 (11.01)      48.58 (9.96)              0  0.018   One_way_ANOVA
    bili (median [IQR])    1.40 [0.80,3.20]   1.30 [0.72,3.60]          0  0.842   Kruskal-Wallis
    chol (mean (std))      365.01 (209.54)    373.88 (252.48)         134  0.748   One_way_ANOVA
    albumin (mean (std))   3.52 (0.44)        3.52 (0.40)               0  0.874   One_way_ANOVA
    copper (mean (std))    97.64 (90.59)      97.65 (80.49)           108  0.999   One_way_ANOVA
    alk.phos (mean (std))  2021.30 (2183.44)  1943.01 (2101.69)       106  0.747   One_way_ANOVA
    ast (mean (std))       120.21 (54.52)     124.97 (58.93)          106  0.460   One_way_ANOVA
    trig (mean (std))      124.14 (71.54)     125.25 (58.52)          136  0.886   One_way_ANOVA
    platelet (mean (std))  258.75 (100.32)    265.20 (90.73)           11  0.555   One_way_ANOVA
    protime (mean (std))   10.65 (0.85)       10.80 (1.14)              2  0.197   One_way_ANOVA
    status (n (%))                                                      0  0.894   Chi-squared
    0                      83 (52.53)         85 (55.19)
    1                      10 (6.33)          9 (5.84)
    2                      65 (41.14)         60 (38.96)
    ascites (n (%))                                                   106  0.567   Chi-squared
    0.0                    144 (91.14)        144 (93.51)
    1.0                    14 (8.86)          10 (6.49)
    hepato (n (%))                                                    106  0.088   Chi-squared
    0.0                    85 (53.80)         67 (43.51)
    1.0                    73 (46.20)         87 (56.49)
    spiders (n (%))                                                   106  0.985   Chi-squared
    0.0                    113 (71.52)        109 (70.78)
    1.0                    45 (28.48)         45 (29.22)
    edema (n (%))                                                       0  0.877   Chi-squared
    0.0                    132 (83.54)        131 (85.06)
    0.5                    16 (10.13)         13 (8.44)
    1.0                    10 (6.33)          10 (6.49)
    stage (n (%))                                                       6  0.201   Chi-squared
    1.0                    12 (7.59)          4 (2.60)
    2.0                    35 (22.15)         32 (20.78)
    3.0                    56 (35.44)         64 (41.56)
    4.0                    55 (34.81)         54 (35.06)
    sex (n (%))                                                         0  0.421   Chi-squared
    f                      137 (86.71)        139 (90.26)
    m                      21 (13.29)         15 (9.74)
  11. Tables can be exported to file in various formats, including LaTeX, CSV, and HTML. Files are exported by calling the to_format method on the DataFrame. For example, mytable can be exported to a CSV named ‘mytable.csv’ with the following command:

    mytable.to_csv('mytable.csv')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableone-0.6.0.tar.gz (31.5 kB view details)

Uploaded Source

Built Distribution

tableone-0.6.0-py2.py3-none-any.whl (25.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tableone-0.6.0.tar.gz.

File metadata

  • Download URL: tableone-0.6.0.tar.gz
  • Upload date:
  • Size: 31.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.7.1 requests-toolbelt/0.8.0 tqdm/4.23.0 CPython/3.6.5

File hashes

Hashes for tableone-0.6.0.tar.gz
Algorithm Hash digest
SHA256 a8fba616d860f06c1bbaf72e4413586001bc73efb1488f3b51119ba0c23fd862
MD5 9c08dd5f6d89fb9a09d5a53de262e2e5
BLAKE2b-256 aec556a30d47c59340813807ea24bb31aeddb861cb36a061ade2c2d1f419a6d9

See more details on using hashes here.

File details

Details for the file tableone-0.6.0-py2.py3-none-any.whl.

File metadata

  • Download URL: tableone-0.6.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 25.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.7.1 requests-toolbelt/0.8.0 tqdm/4.23.0 CPython/3.6.5

File hashes

Hashes for tableone-0.6.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d06708b072d81ffb59b0061575f7e06ad2787b8d29df3a7b9b9475e744948006
MD5 938283c78c1e716cce898215ea7b3ac7
BLAKE2b-256 f73a20f31d8467380762887eb79359bc6ae5e7b522d7f7569e6727b4da5b2b00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page