Skip to main content

A utility library for working with Table Schema in Python

Project description

tableschema-py
==============

| |Travis|
| |Coveralls|
| |PyPi|
| |SemVer|
| |Gitter|

A library for working with `Table
Schema <http://specs.frictionlessdata.io/table-schema/>`__ in Python.

Version v1.0 includes various important changes. Please read a
`migration guide <#v10>`__.

Features
--------

- ``Table`` to work with data tables described by Table Schema
- ``Schema`` representing Table Schema
- ``Field`` representing Table Schema field
- ``validate`` to validate Table Schema
- ``infer`` to infer Table Schema from data
- built-in command-line interface to validate and infer schemas
- storage/plugins system to connect tables to different storage
backends like SQL Database

Gettings Started
----------------

Installation
~~~~~~~~~~~~

The package use semantic versioning. It means that major versions could
include breaking changes. It's highly recommended to specify
``tableschema`` version range in your ``setup/requirements`` file e.g.
``tableschema>=1.0,<2.0``.

.. code:: bash

$ pip install tableschema

Examples
~~~~~~~~

Code examples in this readme requires Python 3.3+ interpreter. You could
see even more example in
`examples <https://github.com/frictionlessdata/tableschema-py/tree/master/examples>`__
directory.

.. code:: python

from tableschema import Table

# Create table
table = Table('path.csv', schema='schema.json')

# Print schema descriptor
print(table.schema.descriptor)

# Print cast rows in a dict form
for keyed_row in table.iter(keyed=True):
print(keyed_row)

Documentation
-------------

Table
~~~~~

A table is a core concept in a tabular data world. It represents a data
with a metadata (Table Schema). Let's see how we could use it in
practice.

Consider we have some local csv file. It could be inline data or remote
link - all supported by ``Table`` class (except local files for
in-brower usage of course). But say it's ``data.csv`` for now:

.. code:: csv

city,location
london,"51.50,-0.11"
paris,"48.85,2.30"
rome,N/A

Let's create and read a table. We use static ``Table.load`` method and
``table.read`` method with a ``keyed`` option to get array of keyed
rows:

.. code:: python

table = Table('data.csv')
table.headers # ['city', 'location']
table.read(keyed=True)
# [
# {city: 'london', location: '51.50,-0.11'},
# {city: 'paris', location: '48.85,2.30'},
# {city: 'rome', location: 'N/A'},
# ]

As we could see our locations are just a strings. But it should be
geopoints. Also Rome's location is not available but it's also just a
``N/A`` string instead of JavaScript ``null``. First we have to infer
Table Schema:

.. code:: python

table.infer()
table.schema.descriptor
# { fields:
# [ { name: 'city', type: 'string', format: 'default' },
# { name: 'location', type: 'geopoint', format: 'default' } ],
# missingValues: [ '' ] }
table.read(keyed=True)
# Fails with a data validation error

Let's fix not available location. There is a ``missingValues`` property
in Table Schema specification. As a first try we set ``missingValues``
to ``N/A`` in ``table.schema.descriptor``. Schema descriptor could be
changed in-place but all changes sould be commited by
``table.schema.commit()``:

.. code:: python

table.schema.descriptor['missingValues'] = 'N/A'
table.schema.commit()
table.schema.valid # false
table.schema.errors
# [<ValidationError: "'N/A' is not of type 'array'">]

As a good citiziens we've decided to check out schema descriptor
validity. And it's not valid! We sould use an array for
``missingValues`` property. Also don't forget to have an empty string as
a missing value:

.. code:: python

table.schema.descriptor['missingValues'] = ['', 'N/A']
table.schema.commit()
table.schema.valid # true

All good. It looks like we're ready to read our data again:

.. code:: python

table.read(keyed=True)
# [
# {city: 'london', location: [51.50,-0.11]},
# {city: 'paris', location: [48.85,2.30]},
# {city: 'rome', location: null},
# ]

Now we see that:

- locations are arrays with numeric lattide and longitude
- Rome's location is a native Python ``None``

And because there are no errors on data reading we could be sure that
our data is valid againt our schema. Let's save it:

.. code:: python

table.schema.save('schema.json')
table.save('data.csv')

Our ``data.csv`` looks the same because it has been stringified back to
``csv`` format. But now we have ``schema.json``:

.. code:: json

{
"fields": [
{
"name": "city",
"type": "string",
"format": "default"
},
{
"name": "location",
"type": "geopoint",
"format": "default"
}
],
"missingValues": [
"",
"N/A"
]
}

If we decide to improve it even more we could update the schema file and
then open it again. But now providing a schema path:

.. code:: python

table = Table('data.csv', schema='schema.json')
# Continue the work

It was onle basic introduction to the ``Table`` class. To learn more
let's take a look on ``Table`` class API reference.

``Table(source, schema=None, strict=False, post_cast=[], storage=None, **options)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Constructor to instantiate ``Table`` class. If ``references`` argument
is provided foreign keys will be checked on any reading operation.

- ``source (str/list[])`` - data source (one of):
- local file (path)
- remote file (url)
- array of arrays representing the rows
- ``schema (any)`` - data schema in all forms supported by ``Schema``
class
- ``strict (bool)`` - strictness option to pass to ``Schema``
constructor
- ``post_cast (function[])`` - list of post cast processors
- ``storage (None/str)`` - storage name like ``sql`` or ``bigquery``
- ``options (dict)`` - ``tabulator`` or storage options
- ``(exceptions.TableSchemaException)`` - raises any error occured in
table creation process
- ``(Table)`` - returns data table class instance

``table.headers``
^^^^^^^^^^^^^^^^^

- ``(str[])`` - returns data source headers

``table.schema``
^^^^^^^^^^^^^^^^

- ``(Schema)`` - returns schema class instance

``table.iter(keyed=Fase, extended=False, cast=True, relations=False)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Iter through the table data and emits rows cast based on table schema.
Data casting could be disabled.

- ``keyed (bool)`` - iter keyed rows
- ``extended (bool)`` - iter extended rows
- ``cast (bool)`` - disable data casting if false
- ``relations (dict)`` - dict of foreign key references in a form of
``{resource1: [{field1: value1, field2: value2}, ...], ...}``. If
provided foreign key fields will checked and resolved to its
references
- ``(exceptions.TableSchemaException)`` - raises any error occured in
this process
- ``(any[]/any{})`` - yields rows:
- ``[value1, value2]`` - base
- ``{header1: value1, header2: value2}`` - keyed
- ``[rowNumber, [header1, header2], [value1, value2]]`` - extended

``table.read(keyed=False, extended=False, cast=True, relations=False, limit=None)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Read the whole table and returns as array of rows. Count of rows could
be limited.

- ``keyed (bool)`` - flag to emit keyed rows
- ``extended (bool)`` - flag to emit extended rows
- ``cast (bool)`` - flag to disable data casting if false
- ``relations (dict)`` - dict of foreign key references in a form of
``{resource1: [{field1: value1, field2: value2}, ...], ...}``. If
provided foreign key fields will checked and resolved to its
references
- ``limit (int)`` - integer limit of rows to return
- ``(exceptions.TableSchemaException)`` - raises any error occured in
this process
- ``(list[])`` - returns array of rows (see ``table.iter``)

``table.infer(limit=100)``
^^^^^^^^^^^^^^^^^^^^^^^^^^

Infer a schema for the table. It will infer and set Table Schema to
``table.schema`` based on table data.

- ``limit (int)`` - limit rows samle size
- ``(dict)`` - returns Table Schema descriptor

``table.save(target, storage=None, **options)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To save schema use ``table.schema.save()``

Save data source to file locally in CSV format with ``,`` (comma)
delimiter

- ``target (str)`` - saving target (e.g. file path)
- ``storage (None/str)`` - storage name like ``sql`` or ``bigquery``
- ``options (dict)`` - ``tabulator`` or storage options
- ``(exceptions.TableSchemaException)`` - raises an error if there is
saving problem
- ``(True/Storage)`` - returns true or storage instance

Schema
~~~~~~

A model of a schema with helpful methods for working with the schema and
supported data. Schema instances can be initialized with a schema source
as a url to a JSON file or a JSON object. The schema is initially
validated (see `validate <#validate>`__ below). By default validation
errors will be stored in ``schema.errors`` but in a strict mode it will
be instantly raised.

Let's create a blank schema. It's not valid because
``descriptor.fields`` property is required by the `Table
Schema <http://specs.frictionlessdata.io/table-schema/>`__
specification:

.. code:: python

schema = Schema()
schema.valid # false
schema.errors
# [<ValidationError: "'fields' is a required property">]

To do not create a schema descriptor by hands we will use a
``schema.infer`` method to infer the descriptor from given data:

.. code:: python

schema.infer([
['id', 'age', 'name'],
['1','39','Paul'],
['2','23','Jimmy'],
['3','36','Jane'],
['4','28','Judy'],
])
schema.valid # true
schema.descriptor
#{ fields:
# [ { name: 'id', type: 'integer', format: 'default' },
# { name: 'age', type: 'integer', format: 'default' },
# { name: 'name', type: 'string', format: 'default' } ],
# missingValues: [ '' ] }

Now we have an inferred schema and it's valid. We could cast data row
against our schema. We provide a string input by an output will be cast
correspondingly:

.. code:: python

schema.cast_row(['5', '66', 'Sam'])
# [ 5, 66, 'Sam' ]

But if we try provide some missing value to ``age`` field cast will fail
because for now only one possible missing value is an empty string.
Let's update our schema:

.. code:: python

schema.cast_row(['6', 'N/A', 'Walt'])
# Cast error
schema.descriptor['missingValues'] = ['', 'N/A']
schema.commit()
schema.cast_row(['6', 'N/A', 'Walt'])
# [ 6, None, 'Walt' ]

We could save the schema to a local file. And we could continue the work
in any time just loading it from the local file:

.. code:: python

schema.save('schema.json')
schema = Schema('schema.json')

It was onle basic introduction to the ``Schema`` class. To learn more
let's take a look on ``Schema`` class API reference.

``Schema(descriptor, strict=False)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Constructor to instantiate ``Schema`` class.

- ``descriptor (str/dict)`` - schema descriptor:
- local path
- remote url
- dictionary
- ``strict (bool)`` - flag to alter validation behaviour:
- if false error will not be raised and all error will be collected in
``schema.errors``
- if strict is true any validation error will be raised immediately
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(Schema)`` - returns schema class instance

``schema.valid``
^^^^^^^^^^^^^^^^

- ``(bool)`` - returns validation status. It always true in strict
mode.

``schema.errors``
^^^^^^^^^^^^^^^^^

- ``(Exception[])`` - returns validation errors. It always empty in
strict mode.

``schema.descriptor``
^^^^^^^^^^^^^^^^^^^^^

- ``(dict)`` - returns schema descriptor

``schema.primary_key``
^^^^^^^^^^^^^^^^^^^^^^

- ``(str[])`` - returns schema primary key

``schema.foreign_keys``
^^^^^^^^^^^^^^^^^^^^^^^

- ``(dict[])`` - returns schema foreign keys

``schema.fields``
^^^^^^^^^^^^^^^^^

- ``(Field[])`` - returns an array of ``Field`` instances

``schema.field_names``
^^^^^^^^^^^^^^^^^^^^^^

- ``(str[])`` - returns an array of field names.

``schema.get_field(name)``
^^^^^^^^^^^^^^^^^^^^^^^^^^

Get schema field by name.

- ``name (str)`` - schema field name
- ``(Field/None)`` - returns ``Field`` instance or null if not found

``schema.add_field(descriptor)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Add new field to schema. The schema descriptor will be validated with
newly added field descriptor.

- ``descriptor (dict)`` - field descriptor
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(Field/None)`` - returns added ``Field`` instance or null if not
added

``schema.remove_field(name)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Remove field resource by name. The schema descriptor will be validated
after field descriptor removal.

- ``name (str)`` - schema field name
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(Field/None)`` - returns removed ``Field`` instances or null if not
found

``schema.cast_row(row)``
^^^^^^^^^^^^^^^^^^^^^^^^

Cast row based on field types and formats.

- ``row (any[])`` - data row as an array of values
- ``(any[])`` - returns cast data row

``schema.infer(rows, headers=1)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Infer and set ``schema.descriptor`` based on data sample.

- ``rows (list[])`` - array of arrays representing rows.
- ``headers (int/str[])`` - data sample headers (one of):
- row number containing headers (``rows`` should contain headers rows)
- array of headers (``rows`` should NOT contain headers rows)
- ``{dict}`` - returns Table Schema descriptor

``schema.commit(strict=None)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Update schema instance if there are in-place changes in the descriptor.

- ``strict (bool)`` - alter ``strict`` mode for further work
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(bool)`` - returns true on success and false if not modified

.. code:: python

descriptor = {'fields': [{'name': 'field', 'type': 'string'}]}
schema = Schema(descriptor)

schema.getField('name')['type'] # string
schema.descriptor.fields[0]['type'] = 'number'
schema.getField('name')['type'] # string
schema.commit()
schema.getField('name')['type'] # number

``schema.save(target)``
^^^^^^^^^^^^^^^^^^^^^^^

Save schema descriptor to target destination.

- ``target (str)`` - path where to save a descriptor
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(bool)`` - returns true on success

Field
~~~~~

.. code:: python

from tableschema import Field

# Init field
field = Field({'name': 'name', type': 'number'})

# Cast a value
field.cast_value('12345') # -> 12345

Data values can be cast to native Python objects with a Field instance.
Type instances can be initialized with `field
descriptors <https://specs.frictionlessdata.io/table-schema/>`__. This
allows formats and constraints to be defined.

Casting a value will check the value is of the expected type, is in the
correct format, and complies with any constraints imposed by a schema.
E.g. a date value (in ISO 8601 format) can be cast with a DateType
instance. Values that can't be cast will raise an ``InvalidCastError``
exception.

Casting a value that doesn't meet the constraints will raise a
``ConstraintError`` exception.

Here is an API reference for the ``Field`` class:

``new Field(descriptor, missingValues=[''])``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Constructor to instantiate ``Field`` class.

- ``descriptor (dict)`` - schema field descriptor
- ``missingValues (str[])`` - an array with string representing missing
values
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(Field)`` - returns field class instance

``field.name``
^^^^^^^^^^^^^^

- ``(str)`` - returns field name

``field.type``
^^^^^^^^^^^^^^

- ``(str)`` - returns field type

``field.format``
^^^^^^^^^^^^^^^^

- ``(str)`` - returns field format

``field.required``
^^^^^^^^^^^^^^^^^^

- ``(bool)`` - returns true if field is required

``field.constraints``
^^^^^^^^^^^^^^^^^^^^^

- ``(dict)`` - returns an object with field constraints

``field.descriptor``
^^^^^^^^^^^^^^^^^^^^

- ``(dict)`` - returns field descriptor

``field.castValue(value, constraints=true)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Cast given value according to the field type and format.

- ``value (any)`` - value to cast against field
- ``constraints (boll/str[])`` - gets constraints configuration
- it could be set to true to disable constraint checks
- it could be an Array of constraints to check e.g. ['minimum',
'maximum']
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(any)`` - returns cast value

``field.testValue(value, constraints=true)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Test if value is compliant to the field.

- ``value (any)`` - value to cast against field
- ``constraints (bool/str[])`` - constraints configuration
- ``(bool)`` - returns if value is compliant to the field

validate
~~~~~~~~

Given a schema as JSON file, url to JSON file, or a Python dict,
``validate`` returns ``True`` for a valid Table Schema, or raises an
exception, ``exceptions.ValidationError``. It validates only **schema**,
not data against schema!

.. code:: python

from tableschema import validate, exceptions

try:
valid = validate(descriptor)
except exceptions.ValidationError as exception:
for error in exception.errors:
# handle individual error

``validate(descriptor)``
^^^^^^^^^^^^^^^^^^^^^^^^

Validate a Table Schema descriptor.

- ``descriptor (str/dict)`` - schema descriptor (one of):
- local path
- remote url
- object
- (exceptions.ValidationError) - raises on invalid
- ``(bool)`` - returns true on valid

infer
~~~~~

Given headers and data, ``infer`` will return a Table Schema as a Python
dict based on the data values. Given the data file,
``data_to_infer.csv``:

::

id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy

Let's call ``infer`` for this file:

.. code:: python

from tableschema import infer

descriptor = infer('data_to_infer.csv')
#{'fields': [
# {
# 'format': 'default',
# 'name': 'id',
# 'type': 'integer'
# },
# {
# 'format': 'default',
# 'name': 'age',
# 'type': 'integer'
# },
# {
# 'format': 'default',
# 'name': 'name',
# 'type': 'string'
# }]
#}

The number of rows used by ``infer`` can be limited with the ``limit``
argument.

``infer(source, headers=1, limit=100, **options)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Infer source schema.

- ``source (any)`` - source as path, url or inline data
- ``headers (int/str[])`` - headers rows number or headers list
- ``(exceptions.TableSchemaException)`` - raises any error occured in
the process
- ``(dict)`` - returns schema descriptor

Exceptions
~~~~~~~~~~

``exceptions.TableSchemaException``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Base class for all library exceptions. If there are multiple errors it
could be read from an exceptions object:

.. code:: python


try:
# lib action
except exceptions.TableSchemaException as exception:
if exception.multiple:
for error in exception.errors:
# handle error

``exceptions.LoadError``
^^^^^^^^^^^^^^^^^^^^^^^^

All loading errors.

``exceptions.ValidationError``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

All validation errors.

``exceptions.CastError``
^^^^^^^^^^^^^^^^^^^^^^^^

All value cast errors.

``exceptions.RelationError``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

All integrity errors.

``exceptions.StorageError``
^^^^^^^^^^^^^^^^^^^^^^^^^^^

All storage errors.

Storage
~~~~~~~

The library includes interface declaration to implement tabular
``Storage``. This interface allow to use different data storage systems
like SQL with ``tableschema.Table`` class (load/save) as well as on the
data package level:

|Storage|

For instantiation of concrete storage instances ``tableschema.Storage``
provides a unified factory method ``connect`` (under the hood the plugin
system will be used):

.. code:: python

# pip install tableschema_sql
from tableschema import Storage

storage = Storage.connect('sql', **options)
storage.create('bucket', descriptor)
storage.write('bucket', rows)
storage.read('bucket')

``Storage.connect(name, **options)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Create tabular ``storage`` based on storage name.

- ``name (str)`` - storage name like ``sql``
- ``options (dict)`` - concrete storage options
- ``(exceptions.StorageError)`` - raises on any error
- ``(Storage)`` - returns ``Storage`` instance

--------------

An implementor should follow ``tableschema.Storage`` interface to write
his own storage backend. Concrete storage backends could include
additional functionality specific to conrete storage system. See
``plugins`` system below to know how to integrate custom storage plugin
into your workflow.

``<<Interface>>Storage(**options)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Create tabular ``storage``. Implementations should fully implement this
interface to be compatible to ``Storage`` API.

- ``options (dict)`` - concrete storage options
- ``(exceptions.StorageError)`` - raises on any error
- ``(Storage)`` - returns ``Storage`` instance

``storage.buckets``
^^^^^^^^^^^^^^^^^^^

Return list of storage bucket names. A ``bucket`` is a special term
which has almost the same meaning as the term ``table``. You should
consider ``bucket`` as a ``table`` stored in the ``storage``.

- ``(exceptions.StorageError)`` - raises on any error
- ``str[]`` - return list of bucket names

``create(bucket, descriptor, force=False)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Create one/multiple buckets.

- ``bucket (str/list)`` - bucket name or list of bucket names
- ``descriptor (dict/dict[])`` - schema descriptor or list of
descriptors
- ``force (bool)`` - delete and re-create already existent buckets
- ``(exceptions.StorageError)`` - raises on any error

``delete(bucket=None, ignore=False)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Delete one/multiple/all buckets.

- ``bucket (str/list/None)`` - bucket name or list of bucket names to
delete. If None all buckets will be deleted
- ``descriptor (dict/dict[])`` - schema descriptor or list of
descriptors
- ``ignore (bool)`` - don't raise an error on non-existent bucket
deletion from storage
- ``(exceptions.StorageError)`` - raises on any error

``describe(bucket, descriptor=None)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Get/set bucket's Table Schema descriptor.

- ``bucket (str)`` - bucket name
- ``descriptor (dict/None)`` - schema descriptor to set
- ``(exceptions.StorageError)`` - raises on any error
- ``(dict)`` - returns Table Schema descriptor

``iter(bucket)``
^^^^^^^^^^^^^^^^

This method should iter typed values based on the schema of this bucket.

- ``bucket (str)`` - bucket name
- ``(exceptions.StorageError)`` - raises on any error
- ``(list[])`` - yields data rows

``read(bucket)``
^^^^^^^^^^^^^^^^

This method should read typed values based on the schema of this bucket.

- ``bucket (str)`` - bucket name
- ``(exceptions.StorageError)`` - raises on any error
- ``(list[])`` - returns data rows

``write(bucket, rows)``
^^^^^^^^^^^^^^^^^^^^^^^

This method writes data rows into the ``storage``. It should store
values of unsupported types as strings internally (like csv does).

- ``bucket (str)`` - bucket name
- ``rows (list[])`` - data rows to write
- ``(exceptions.StorageError)`` - raises on any error

Plugins
~~~~~~~

Table Schema has a plugin system. Any package with the name like
``tableschema_<name>`` could be imported as:

.. code:: python

from tableschema.plugins import <name>

If a plugin is not installed ``ImportError`` will be raised with a
message describing how to install the plugin.

Official plugins
^^^^^^^^^^^^^^^^

- `BigQuery
Storage <https://github.com/frictionlessdata/tableschema-bigquery-py>`__
- `Elasticsearch
Storage <https://github.com/frictionlessdata/tableschema-elasticsearch-py>`__
- `Pandas
Storage <https://github.com/frictionlessdata/tableschema-pandas-py>`__
- `SQL
Storage <https://github.com/frictionlessdata/tableschema-sql-py>`__
- `SPSS
Storage <https://github.com/frictionlessdata/tableschema-spss-py>`__

CLI
~~~

It's a provisional API excluded from SemVer. If you use it as a part
of other program please pin concrete ``tableschema`` version to your
requirements file.

Table Schema features a CLI called ``tableschema``. This CLI exposes the
``infer`` and ``validate`` functions for command line use.

Example of ``validate`` usage:

::

$ tableschema validate path/to-schema.json

Example of ``infer`` usage:

::

$ tableschema infer path/to/data.csv

The response is a schema as JSON. The optional argument ``--encoding``
allows a character encoding to be specified for the data file. The
default is utf-8.

Contributing
------------

The project follows the `Open Knowledge International coding
standards <https://github.com/okfn/coding-standards>`__.

| Recommended way to get started is to create and activate a project
virtual environment.
| To install package and development dependencies into active
environment:

::

$ make install

To run tests with linting and coverage:

.. code:: bash

$ make test

| For linting ``pylama`` configured in ``pylama.ini`` is used. On this
stage it's already
| installed into your environment and could be used separately with more
fine-grained control
| as described in documentation -
https://pylama.readthedocs.io/en/latest/.

For example to sort results by error type:

.. code:: bash

$ pylama --sort <path>

| For testing ``tox`` configured in ``tox.ini`` is used.
| It's already installed into your environment and could be used
separately with more fine-grained control as described in documentation
- https://testrun.org/tox/latest/.

| For example to check subset of tests against Python 2 environment with
increased verbosity.
| All positional arguments and options after ``--`` will be passed to
``py.test``:

.. code:: bash

tox -e py27 -- -v tests/<path>

| Under the hood ``tox`` uses ``pytest`` configured in ``pytest.ini``,
``coverage``
| and ``mock`` packages. This packages are available only in tox
envionments.

Changelog
---------

Here described only breaking and the most important changes. The full
changelog and documentation for all released versions could be found in
nicely formatted `commit
history <https://github.com/frictionlessdata/tableschema-py/commits/master>`__.

v1.0
~~~~

This version includes various big changes. **A migration guide is under
development and will be published here**.

v0.10
~~~~~

Last pre-v1 stable version of the library.

.. |Travis| image:: https://travis-ci.org/frictionlessdata/tableschema-py.svg?branch=master
:target: https://travis-ci.org/frictionlessdata/tableschema-py
.. |Coveralls| image:: http://img.shields.io/coveralls/frictionlessdata/tableschema-py.svg?branch=master
:target: https://coveralls.io/r/frictionlessdata/tableschema-py?branch=master
.. |PyPi| image:: https://img.shields.io/pypi/v/tableschema.svg
:target: https://pypi.python.org/pypi/tableschema
.. |SemVer| image:: https://img.shields.io/badge/versions-SemVer-brightgreen.svg
:target: http://semver.org/
.. |Gitter| image:: https://img.shields.io/gitter/room/frictionlessdata/chat.svg
:target: https://gitter.im/frictionlessdata/chat
.. |Storage| image:: https://raw.githubusercontent.com/frictionlessdata/tableschema-py/master/data/storage.png

Project details


Release history Release notifications | RSS feed

This version

1.0.8

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tableschema-1.0.8.tar.gz (69.8 kB view details)

Uploaded Source

Built Distribution

tableschema-1.0.8-py2.py3-none-any.whl (63.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tableschema-1.0.8.tar.gz.

File metadata

  • Download URL: tableschema-1.0.8.tar.gz
  • Upload date:
  • Size: 69.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tableschema-1.0.8.tar.gz
Algorithm Hash digest
SHA256 5be2af69a9554d63b0eda5a5cd1fa030dbd205b3376e6b6da473c97bb14be2e5
MD5 f629055e86b92c7daa416acb6298dc8d
BLAKE2b-256 3460913bec05204c3d17ff136164e73f13012e204fa8fecf6158880821d7badd

See more details on using hashes here.

File details

Details for the file tableschema-1.0.8-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for tableschema-1.0.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ba11b433be57c7f8e33a6ee679a9238b744f19b59eb838d10022d48abfdff37b
MD5 d5f3e7ad9de65da7a0e8d3ae64ef113f
BLAKE2b-256 a80811f665094cd56a59676b617354d7f43c18de7b73abe213cdd9af0f2cce26

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page