Skip to main content

Format agnostic tabular data library (XLS, JSON, YAML, CSV)

Project description

Tablib: format-agnostic tabular dataset library

_____         ______  ___________ ______
__  /_______ ____  /_ ___  /___(_)___  /_
_  __/_  __ `/__  __ \__  / __  / __  __ \
/ /_  / /_/ / _  /_/ /_  /  _  /  _  /_/ /
\__/  \__,_/  /_.___/ /_/   /_/   /_.___/

Tablib is a format-agnostic tabular dataset library, written in Python.

Output formats supported:

  • Excel

  • JSON

  • YAML

  • CSV

At this time, Tablib supports the export of it’s powerful Dataset object instances into any of the above formats. Import is underway.

Note that tablib purposefully excludes XML support. It always will.

Usage

Populate fresh data files:

headers = ('first_name', 'last_name')

data = [
    ('John', 'Adams'),
    ('George', 'Washington')
]

data = tablib.Dataset(*data, headers=headers)

Intelligently add new rows:

>>> data.append(('Henry', 'Ford'))

Intelligently add new columns:

>>> data.append(col=('age', 90, 67, 83))

Slice rows:

>>> print data[:2]
[('John', 'Adams', 90), ('George', 'Washington', 67)]

Slice columns by header:

>>> print data['first_name']
['John', 'George', 'Henry']

Easily delete rows:

>>> del data[1]

Drumroll please………..

JSON!

>>> print data.json
[
  {
    "last_name": "Adams",
    "age": 90,
    "first_name": "John"
  },
  {
    "last_name": "Ford",
    "age": 83,
    "first_name": "Henry"
  }
]

YAML!

>>> print data.yaml
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}

CSV…

>>> print data.csv
first_name,last_name,age
John,Adams,90
Henry,Ford,83

EXCEL!

>>> open('people.xls').write(data.xls)

It’s that easy.

Installation

To install tablib, simply:

$ pip install tablib

Or, if you absolutely must:

$ easy_install tablib

Contribute

If you’d like to contribute, simply fork the repository, commit your changes to the develop branch (or branch off of it), and send a pull request. Make sure you add yourself to AUTHORS.

Roadmap

  • Add ability to add/remove full columns

  • Import datasets from CSV, JSON, YAML

  • Release CLI Interface

  • Auto-detect import format

  • Add possible other exports (SQL?)

  • Possibly plugin-ify format architecture

  • Ability to assign types to rows (set, regex=, &c.)

  • Plugin support

History

0.6.4 (2010-09-13)

  • Updated unicode export for XLS

  • More exhaustive unit tests

0.6.3 (2010-09-14)

  • Added Dataset.append() support for columns.

0.6.2 (2010-09-13)

  • Fixed Dataset.append() error on empty dataset.

  • Updated Dataset.headers property w/ validation.

  • Added Testing Fixtures.

0.6.1 (2010-09-12)

  • Packaging hotfixes.

0.6.0 (2010-09-11)

  • Public Release.

  • Export Support for XLS, JSON, YAML, and CSV.

  • DataBook Export for XLS, JSON, and YAML.

  • Python Dict Property Support.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tablib-0.6.4.tar.gz (9.0 kB view details)

Uploaded Source

File details

Details for the file tablib-0.6.4.tar.gz.

File metadata

  • Download URL: tablib-0.6.4.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tablib-0.6.4.tar.gz
Algorithm Hash digest
SHA256 79f5315d63fd4257d531b86301cb46e862e678c66445eb3cd9a4139d1e8abf98
MD5 4a17f6458a820b0f55717963efc7b874
BLAKE2b-256 66b3386011297cb44219ca681ef1c781e0ec900009c8dd576de18222f1f812aa

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page