Skip to main content

Format agnostic tabular data library (XLS, JSON, YAML, CSV)

Project description

Tablib: format-agnostic tabular dataset library

_____         ______  ___________ ______
__  /_______ ____  /_ ___  /___(_)___  /_
_  __/_  __ `/__  __ \__  / __  / __  __ \
/ /_  / /_/ / _  /_/ /_  /  _  /  _  /_/ /
\__/  \__,_/  /_.___/ /_/   /_/   /_.___/

Tablib is a format-agnostic tabular dataset library, written in Python.

Output formats supported:

  • Excel
  • JSON
  • YAML
  • CSV

At this time, Tablib supports the export of it’s powerful Dataset object instances into any of the above formats. Import is underway.

Note that tablib purposefully excludes XML support. It always will.

Usage

Populate fresh data files:

headers = ('first_name', 'last_name')

data = [
    ('John', 'Adams'),
    ('George', 'Washington')
]

data = tablib.Dataset(*data, headers=headers)

Intelligently add new rows:

>>> data.append(('Henry', 'Ford'))

Intelligently add new columns:

>>> data.append(col=('age', 90, 67, 83))

Slice rows:

>>> print data[:2]
[('John', 'Adams', 90), ('George', 'Washington', 67)]

Slice columns by header:

>>> print data['first_name']
['John', 'George', 'Henry']

Easily delete rows:

>>> del data[1]

Drumroll please………..

JSON!

>>> print data.json
[
  {
    "last_name": "Adams",
    "age": 90,
    "first_name": "John"
  },
  {
    "last_name": "Ford",
    "age": 83,
    "first_name": "Henry"
  }
]

YAML!

>>> print data.yaml
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}

CSV…

>>> print data.csv
first_name,last_name,age
John,Adams,90
Henry,Ford,83

EXCEL!

>>> open('people.xls').write(data.xls)

It’s that easy.

Installation

To install tablib, simply:

$ pip install tablib

Or, if you absolutely must:

$ easy_install tablib

Contribute

If you’d like to contribute, simply fork the repository, commit your changes to the develop branch (or branch off of it), and send a pull request. Make sure you add yourself to AUTHORS.

Roadmap

  • Add ability to add/remove full columns
  • Import datasets from CSV, JSON, YAML
  • Release CLI Interface
  • Auto-detect import format
  • Add possible other exports (SQL?)
  • Possibly plugin-ify format architecture
  • Ability to assign types to rows (set, regex=, &c.)
  • Plugin support

History

0.6.4 (2010-09-13)

  • Updated unicode export for XLS
  • More exhaustive unit tests

0.6.3 (2010-09-14)

  • Added Dataset.append() support for columns.

0.6.2 (2010-09-13)

  • Fixed Dataset.append() error on empty dataset.
  • Updated Dataset.headers property w/ validation.
  • Added Testing Fixtures.

0.6.1 (2010-09-12)

  • Packaging hotfixes.

0.6.0 (2010-09-11)

  • Public Release.
  • Export Support for XLS, JSON, YAML, and CSV.
  • DataBook Export for XLS, JSON, and YAML.
  • Python Dict Property Support.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tablib, version 0.6.4
Filename, size File type Python version Upload date Hashes
Filename, size tablib-0.6.4.tar.gz (9.0 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page