Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.0.5.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

tabmat-3.0.5-cp39-cp39-win_amd64.whl (530.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.0.5-cp39-cp39-win32.whl (439.0 kB view details)

Uploaded CPython 3.9 Windows x86

tabmat-3.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tabmat-3.0.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

tabmat-3.0.5-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.0.5-cp38-cp38-win_amd64.whl (530.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.0.5-cp38-cp38-win32.whl (439.5 kB view details)

Uploaded CPython 3.8 Windows x86

tabmat-3.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tabmat-3.0.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

tabmat-3.0.5-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.0.5-cp37-cp37m-win_amd64.whl (517.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.0.5-cp37-cp37m-win32.whl (431.1 kB view details)

Uploaded CPython 3.7m Windows x86

tabmat-3.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tabmat-3.0.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (5.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

tabmat-3.0.5-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.0.5-cp36-cp36m-win_amd64.whl (517.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.0.5-cp36-cp36m-win32.whl (431.0 kB view details)

Uploaded CPython 3.6m Windows x86

tabmat-3.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tabmat-3.0.5-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (5.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

tabmat-3.0.5-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.0.5.tar.gz.

File metadata

  • Download URL: tabmat-3.0.5.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5.tar.gz
Algorithm Hash digest
SHA256 1b5e66179b60aeab85f8b4c18f643480f41986cb96d7997549a87d4fc975b0ba
MD5 a1ffb07f7bd8b0721c736b65e0ef7930
BLAKE2b-256 a7da0e181ca84890be7d86503c497e4dbc50d511375dab9b14af79b63c3b08f0

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 530.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 520c208f71591b2ebcb554e84985a8a321f04dd9d85c33dd533f6bf106aa6f85
MD5 fe7ed915c5bb8b7bbe935d68e65781f5
BLAKE2b-256 d410df9a5454be653cdfd8ddc0a1f895f2c6efb5ef986af81ca9ec9e2b6d1fee

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 439.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c3fc9ea922d56ed14116a66185ef8b0f5ad1ad3bf3fd8814518ae058be03d5f5
MD5 491294d201ed6cb4d32a32578d0c899c
BLAKE2b-256 7ea658cf1c30b0e0da65f6747969ebcd2d741912df33cafc11a8ec614d7e1fe4

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e3318532af1972579e4d8901418be1d1f86b7880e31c622d81287bd19865b3fc
MD5 f6401ca9fb2775f1d75441ba2a9c14a5
BLAKE2b-256 ae79767fc7df1153347c926f4e7439a5f4d3eb7baf6bdde3fbc550e12be1180c

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 120ebf34b7d1cf521fda5421cc6f0d4c7b963d22c87d11245df28d8f67627f3e
MD5 015954abc4798b3e7d36baeb6d84861a
BLAKE2b-256 6e42534e4407d81ba65389036f76378d9375453d375525c731fb0b8d4b852ee1

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2d71761ec49afffbb69afc9ae77d67b299124a8cc0fd45eebadc019e22ddead
MD5 00aa9ffc8334d35da503af02fd2de8c7
BLAKE2b-256 fd2f3e816ac0163b152230ef995671687e457b47627a2d56deef4456d071d25e

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 530.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f343acc4d41e07ac5936e5020867d2d1ce6b3e6d06958fa554021d78d0fcd065
MD5 da076f1639b4eaeee56043a320daa4dc
BLAKE2b-256 e14b2ba2107a868576355b2b05e5a141d1645bc20f91599b242f7e0dde3c28f3

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 439.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4b8731d581f1a2801a0ec586b8671113d8d3a8197e8e09e467b94b9374e0e51d
MD5 24a63fd9a6c9543def68ae77802e2ab8
BLAKE2b-256 9b631628130bbef5642f455eb1c642b6bd81bbea27f52ad1296488e6ba6662b3

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e2fabc1730c6f50a3d6398901f78701ef64bd3670c9c559952a6461537108ab1
MD5 4faccc04cb569755e5fa005ac5f3a4c3
BLAKE2b-256 11472517dcab63e395432a5269765c568c9310ea8fb547d4a03aa672e4f9ccf2

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7dae79091fef078abc6a54ef9cdbee843a28b15c52d037cd1f6b54119642d299
MD5 5063a2b628d22c6d5ce5dd63a08ca30c
BLAKE2b-256 cea96f8bd9f020bcc9390b864b2968da106a0d8f5af48bbb8b69a5707cd3706a

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c8321b64fbee780f4678148f35ad9280fa645c385e422473f2e50f41c44dc19
MD5 3f9f22b618b5a71208184e3c6b529892
BLAKE2b-256 13d293f783f6c5dd5d4fdae9b1c4bdfea7475062c792ef50fbd7437173bf75eb

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 517.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ab21c69cd226e9ab28ee4d8e556f998f475ee6a0b2215e1ba8af1da41835a37d
MD5 fd5036ce87ae073c5cb941b08d50a567
BLAKE2b-256 09669dde33ff13cef9085ed3e2e6fe5d2b1817d4fb32df92ab3ad24cd7817870

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 431.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3e8f2a64dc6df712a99e8d9ed50e269011e39e9727f18bb5be6d1dd96fdcd491
MD5 04626edbf2b6ac86f5b4da1bab55137e
BLAKE2b-256 d4505b97ceb0d2f47aac8af36744000c5a69bb54eab0070e7b246f83e8f47fa9

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b322ba3d61cddacce2a00fc51472e94b250225901e692b3d5ce3c858f2e01c7b
MD5 e915876bfc0eb3e04fbe22e523e4841c
BLAKE2b-256 c46f3d41bbee16fa081d93fc0f299b7eabd3a0b39626654a9b7d46fc8c4117ad

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.0.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4d375fd8eac380594b50eccc2bc2b60cc0741676d09b3706adc7f0b289274d7f
MD5 99693529b6c457f418991b62c4279178
BLAKE2b-256 17fbb9490cde63f93ed03e0e46d8c04f8c12e6b4f4f65e8f699e653b77122887

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4585b974097508e163df3cc327fc0e13b2a3e9b9b971046cb2933b2dd781b514
MD5 16168b6bfaa3a0f7b475063378e7e774
BLAKE2b-256 4d6bdc12f3f393eaf8e3f93aedca8bf0c5c8dfd6f8957e5d41a8f5e957c829a2

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 517.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a079f667e91a26f216add9c3f6dba826d44b43e358e0a75d7cfc63d6dfa97ea9
MD5 a58264a2fd970628ace1ef4ff4d9be06
BLAKE2b-256 bcf80e76f0415de902c7b6d8e9210bd6ff8c919b7d6226d08768229803b2f787

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 431.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8cf2e5c777799da60c4098e9341aafabdf92ab6c1b9f86f162a2adb1d85fda67
MD5 d57b78fc5fd5f57afdc7a9d91c599110
BLAKE2b-256 077a37ebef12c8675bae95f6f3e2ade4cc4ae244e8738b12b525bb2b31e17468

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 34b6956e3987849de8aee85198dc7063c7b0c7ee2465485df3bb7396e18edea3
MD5 b1a0673be097e0530c74ec13ad0e901d
BLAKE2b-256 6fde0db092b8cc903b135a2e7b9a09809f266b2aa458be9385c1d93bccd4d613

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.0.5-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 eace5072bb4768a93968510bc4b141f54192069d118ab534275f4d90a9ec5405
MD5 909bf076b4e4b7382df03f3bdcdb06c4
BLAKE2b-256 b87d4bb3b87f4a10428267c2e57e12281d72765bcd9199b02dfa7566d7a98c48

See more details on using hashes here.

File details

Details for the file tabmat-3.0.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for tabmat-3.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f0618895ba2bc55c0e7ce303c8fa9a93489cf5f9ab2424d3408f999810dc4607
MD5 9f52d71d0cf6e9585d08d98ea86153dd
BLAKE2b-256 658cc9cca35fea9560b5ddeaaabaaee71bc4d0e26fdd5b9f855916ac4f9b9a60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page