Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.0.7.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

tabmat-3.0.7-cp39-cp39-win_amd64.whl (530.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.0.7-cp39-cp39-win32.whl (439.0 kB view details)

Uploaded CPython 3.9 Windows x86

tabmat-3.0.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tabmat-3.0.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

tabmat-3.0.7-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.0.7-cp38-cp38-win_amd64.whl (530.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.0.7-cp38-cp38-win32.whl (439.5 kB view details)

Uploaded CPython 3.8 Windows x86

tabmat-3.0.7-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tabmat-3.0.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

tabmat-3.0.7-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.0.7-cp37-cp37m-win_amd64.whl (517.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.0.7-cp37-cp37m-win32.whl (431.1 kB view details)

Uploaded CPython 3.7m Windows x86

tabmat-3.0.7-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tabmat-3.0.7-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (5.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

tabmat-3.0.7-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.0.7-cp36-cp36m-win_amd64.whl (517.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.0.7-cp36-cp36m-win32.whl (431.0 kB view details)

Uploaded CPython 3.6m Windows x86

tabmat-3.0.7-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tabmat-3.0.7-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (5.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

tabmat-3.0.7-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.0.7.tar.gz.

File metadata

  • Download URL: tabmat-3.0.7.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7.tar.gz
Algorithm Hash digest
SHA256 24329097eaf34e37c4b6deda4219f744ade376224816d10feb12e6959e520fce
MD5 da443c0ea4847fc894809e51fb8b9455
BLAKE2b-256 14873675790abb170d9e416f407fd36de0faf4360205517b12498c768dcc4940

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 530.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 91d50dff946b58bc229651e0b943cc1f833b913f77e2b5321fcca01c633fb329
MD5 8f1336b053f793de3e26f52ffceedca0
BLAKE2b-256 9afbeb5851258d6ccca3c87d5eca8899aa54bc662dafe01ee7deda75baf99177

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 439.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 113506fd94b2600a760e83e00c2afe54fb7766b5c1a83e8c14419538d8003d02
MD5 c98827cef93662b5e15acf2e4197cd39
BLAKE2b-256 1052e3b72c6fb1cb8afb20fef8a1214fb004a5723b282abb17694d68cb6c188a

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6381e4b0dc8849de2278f67afa1706a93bd2c81a8e842a91ba8d8b1cc308b33c
MD5 7fb6e5eb7327ad4fd28049db154d763d
BLAKE2b-256 be381769471e77176fde7e889340d59989c5d0085b9d89871f29300a01ed9614

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8e695ff51e4bed2cd0df850a5fc647d3e3c49e5873cb895c5c6229daab8ad1c2
MD5 96a137f0dd7e3dccbe9845fca086855c
BLAKE2b-256 45eb765593ddafc58b741ee8ee900269b84d8d1aed60f1a2cd6c330f485dca64

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9e63018a58a417c338dbd00d2a8a6bcac3de31eb08d63bf27ee38d2bffc9fe6
MD5 074dac93e2d84f7fc2d03af0bbd6ec8c
BLAKE2b-256 e2299a0d146121aa12eac50fec293f54ef8fe22b812e5813ff4ee5aa41509f3e

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 530.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fffa6b5ed31f3df3e86c25ad8ab1833e8fd435f705d649eadf7814fcc7e59d2e
MD5 9507f2383a997a7fa7a46d6377e10a85
BLAKE2b-256 b23f494ee0b22d0076c95d1a6708470bfa4a4171b1fb2cbb02449ccf7f794622

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 439.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ccb2bb844901e1c8d35c531feec2712c87bd8be90c617d735c235eaad67e75fc
MD5 3907a0b7b50a589715a1066bf61c02b9
BLAKE2b-256 de031648be9e81c99e2a50009225b29f071a203844e701a17cbc7bc81172d540

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.7-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61849f3573721d3d8d77c042f68238d6678deed11263dac3dbc46a71ad486655
MD5 3cc5aea52ecab811eb195ef652415e2d
BLAKE2b-256 c141a7357a2837af50ce110900c1fa2d3654744f8d4d63f942db58236b186141

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 87be5c6e0ec39694e37c122afcf2980b8dafb747c8517991accb0596c421ea3b
MD5 acdd7883e3586b0b263b6f431d314645
BLAKE2b-256 06d808e9cce3e017d3a6dc98f03dfbac44fafdcf351276e35bc559d2325c80ef

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55270b125ec58834fe67d8a26ed181f6bff1876a92147e396bb0ab81dabdcf1d
MD5 2b8fa396e76f29426e32945a1e7bdbbb
BLAKE2b-256 c8f82c2565a3c84a2794f59c13ff0edf1e8bf948a7a7ebd27d70e263a3410215

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 517.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 67f20ccb352adb3dffcca781afa99b51ee41a3c0b75a0e3bc745a4d63441b5ab
MD5 2b293a01ec41ad661b2fdcdd3692a35f
BLAKE2b-256 87ccaaf9bce8fb0c01f8a39e91acfcf74e87370b5af5d0af2100f80ba9d4db5d

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 431.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 60063c3d06515d14fd8d6f1e4bcaa57ca7fb1530f720470a1e82386914f29e9b
MD5 473dc1c08b03037d570ba23205e0a7ea
BLAKE2b-256 193e744c3e49822584e302a07003bdb10202e051448970661dc241001f4f364c

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.7-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 27e51fd132c409ba0201273ece01ce5ecbc5d00879a8e24e1a507df5d172833f
MD5 b31d726302fe366da7b4311bb8becf8c
BLAKE2b-256 41a4ad8253c529502624036d23cba9d666e631cfa702e05ca3cc1c967bfe35ec

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.0.7-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 abfd25b608fc32cfea2affbf8fd243300da5b2586e8a3811121eb41136c758da
MD5 ea7852704f9c8393e8b9a1f07900b2c8
BLAKE2b-256 54492c241ac8bbc12fd2787b528c71eed9aa277c8634f2e52237ee89264bf21d

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8261c407be5f4b57003581795a41c573bc8e85f51e2cf0f67853688b12aec231
MD5 f781455ce6eb76ecfdeaad4c70de1508
BLAKE2b-256 8ab6faf9db8d04e4975c5a88caece2d0e6c510a5dadbaddf96890b364cfa1f02

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 517.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9ffbd8634e3641e4df460c7e42c994adcb3bd099a848bdde34441eed30ca0867
MD5 ad141cc695ba25969989503e137309dc
BLAKE2b-256 a21a015be0ee12f4da34ade2c6deaee0acd1bf2489698c9da3b08e7f2068b390

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp36-cp36m-win32.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 431.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 76ac48890360196f067c99077556ce669fcc45e35635759dcf7c284557960ebb
MD5 f8d0e69def8d609ee4295aff786e1383
BLAKE2b-256 41b38a6ea2443aaba388281b70fb25b7eff5a9329a8569b070c4bfdfcfe924eb

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.0.7-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1faa14ada36a8778fa52e0decf6a0b1841694aec184a32e2b2eed6993ee6fbbd
MD5 3dd14326f862af68d6be9374f804bc9f
BLAKE2b-256 ed5f90d8bc590d5ff45683018f60d736632bea16371e56b067f1cb97b2b3291f

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.0.7-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6f4f6b5483bdac64cef558da8336fba3c8a24dd6c2709053bc5ae1257cbf6eab
MD5 d5a37f40ee97949adebf9174683de437
BLAKE2b-256 5604e19be7e2414ea4c244e3b2ceb7e337cce4a4b4684301e0a39c97da773a68

See more details on using hashes here.

File details

Details for the file tabmat-3.0.7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.0.7-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for tabmat-3.0.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cabb80db6b439702b6e337379da8619b10b5204ef9c1e169fc664cf6f7a6b055
MD5 ece96914758bdbf6016f6d93d7beb3a5
BLAKE2b-256 ba27dbda32fd050953710d4a1b6363d7edc58c03ec63c4d1b3153506592123bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page