Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.1.0.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

tabmat-3.1.0-cp39-cp39-win_amd64.whl (563.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.1.0-cp39-cp39-win32.whl (460.2 kB view details)

Uploaded CPython 3.9 Windows x86

tabmat-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-3.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

tabmat-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.1.0-cp38-cp38-win_amd64.whl (564.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.1.0-cp38-cp38-win32.whl (460.8 kB view details)

Uploaded CPython 3.8 Windows x86

tabmat-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-3.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

tabmat-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.1.0-cp37-cp37m-win_amd64.whl (548.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.1.0-cp37-cp37m-win32.whl (453.0 kB view details)

Uploaded CPython 3.7m Windows x86

tabmat-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-3.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

tabmat-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.1.0-cp36-cp36m-win_amd64.whl (549.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.1.0-cp36-cp36m-win32.whl (452.9 kB view details)

Uploaded CPython 3.6m Windows x86

tabmat-3.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-3.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

tabmat-3.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.1.0.tar.gz.

File metadata

  • Download URL: tabmat-3.1.0.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0.tar.gz
Algorithm Hash digest
SHA256 b431c264eea995db1260ffaffa3a6fc057d6704621297b5939f863d67e507ea4
MD5 b6975820a2c389561a0c433f47e486bd
BLAKE2b-256 887c1992c169746761b709bb52893c21bc6b1246b26785936abb806c3dfb96b6

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 563.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bbefacee02ff4ab7d03272e5dda9c0101b4872dc2517a195fb7fce279ae9e605
MD5 47a757d430d658747d7e706d878704fa
BLAKE2b-256 d77891acf0467dd6d6328d49e468d88c8c394d680014f4e581b01cec89817f5b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 460.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8dd9e7968f79431f36c11b2dcd68fa4e35b92c0013c9638ed48b84d0083e4bff
MD5 d4fd17e79e4a214da4306eae3bfedc95
BLAKE2b-256 7bad263836a2dcf23b91dfd0a06b64611506ca0d447a392618f864b2edd11b03

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26a2e630dddc6795e5da82a61bcc3537a74e2fff4c68d956b99407ab88a08bd4
MD5 fbb9e480df2f7e1f9b7abf0266928bad
BLAKE2b-256 a613a162816b2fbc898e74698df29e5fd3984eaae5af6ce17cf27c43acc7b116

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 15529f4bf851ec259b04b1c59ecaa090beb0ef29f59e2b7a6972162066a7464d
MD5 5746d1bc010a387d6367241db867cb07
BLAKE2b-256 8a099038e3189ea9ab0f7a0fc936e593ff14bf5ee9b2e31fdc8489b7bd1dc4a1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 877499b3ace40b37f8278e670deb8476315a09e585f2f3b2aebfcc9e006f98a4
MD5 08a616c36c1596715f0b3d9b92723f9d
BLAKE2b-256 544f3891fbb9668825bfaefe12a3c1713f92be57cd07d31399077c3c00090bc5

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 564.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 229f041afe8b0f79771bb9dcaf240643453dabb6887cc958f3e4e2199de6eecb
MD5 4771ea9e19dbc2f1141fa645b31e531d
BLAKE2b-256 b35784c5733b2a0ed90d983c555247a29fc43905aa325cab5bb854a0300fc483

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 460.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0d311ab077224493ec9d00158d32a2dae9bd320b3cb674195f12a38fa1ed23d7
MD5 92f8e4d47995e8671082fc09fc5ad30f
BLAKE2b-256 051903cdb90468349fba52946f852a3598426cfe706cdb10611836b39b2f604a

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81bce8ac5b39a07f7c11f04691a6d878117915b37ac7a99df5b7cd5e54ef6a8c
MD5 98b34d0372856bf1f4bfe96309bc43c9
BLAKE2b-256 b8f0b1fbdb1945af9bba51e80c61b0e8c4b07ee1e37ed099ed28f98259eb32d0

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 17f70d8b3ee7fb7695b2e814f9df9178fa2b81dfe0d1e535344c665daf41a482
MD5 3da44ce90476edc8db8dc9ae815f0546
BLAKE2b-256 d39b6803f97fd4c82d4e61dea40ab90e5d22c218428e27d3a7c78f421ddfbfed

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33b941494f43e35d88cc330ec76d5ecb20c6b21e32df4b7815ca252a434debfd
MD5 7f33298f74abf21da09c900c6a4d38ef
BLAKE2b-256 369073a1b130e03093f1a1e6edab35662f94a7626aeb6a28d10de33d96986deb

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 548.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 affa844d7e7dd645d1a1315afbdc5353d0f59da661a592224a80fd1ce0ee9953
MD5 c1c16c364c0fe7a6f57d9c942912e8df
BLAKE2b-256 822876c43b82e2f35ed09f6d32f3ff7b1354241598287a2b815c705e414141b5

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 453.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ea37395c536d4f77d8401a282b7f331688dce384af95b0561996f1ce3df31525
MD5 69d03f88f0aed8a40568b931618764ee
BLAKE2b-256 d6901b649a7b73cf0cce4bdc485d41f89250b6fe30638cab05f8b1e40da7a9a2

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bc2b42f3b09e18e4563f5ffb7d3a78aa952f2de63549eb1f0e102a962098428
MD5 578c0bcc86f41604f7b8c86b9ca5f5d7
BLAKE2b-256 4153804edd767ecd87a390e18ecbee6f1c1c9c2d2e1577232040c7cd6ad7afb1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d77ffe9854da76a681e588e7f5705f712c022b279b578709e8c1b45bcb33752e
MD5 3e32fce5580ea5c8674a6f332c499e95
BLAKE2b-256 3e99d1cbe7e89ef9396127334f5340b75a7541e4ba8d36af77d9760af2648c89

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 84e1cfe5054bf021d197fc347eb657842854893e7df0b1ad3d1f7536501a8972
MD5 b2c7b3ae585c96716bfa6880e045a26a
BLAKE2b-256 ce23d30ce879a358990ec5a8bf24880f757ab8c3bfd70215452f62eb07d4cf3e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 549.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2cf80f88d1c4bc595510bba0fd06e227b474230acb32d59e1172a5f9191aefc4
MD5 b391619500e478a7211af6c9fce3e709
BLAKE2b-256 db8d9624db1aa3326026e38c0aa526e133ad0187a8fcdcf643e1f30798cf5d2e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 452.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 240495e4406d8e89806c85f38f7d627957b9f17d664bf0ae73203b60951f6364
MD5 90f9b09c388a628121c6838fdc5ba87a
BLAKE2b-256 5613decd6ebfb6083f000856c122e01caed56db671272b52dc5bc9eac8ae3247

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1183d00e1892b8cfc7f457341c710a0c25540259ce030880486e2a679d5f320d
MD5 560ce6b865d11fcb56887da856a34829
BLAKE2b-256 975a89bc931481d290430a44f6f731b388d9ee8694af5841c8ebfc91fa3d09bb

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7447697e627690f0d56ea88d2fe702698b3719125df223125e46647f08009acb
MD5 edde44b4d019b16b1e31f2de80224d83
BLAKE2b-256 736354cfc0287900b755cf8934135bee04b6c9838ca9782a2d488ddd97818436

See more details on using hashes here.

File details

Details for the file tabmat-3.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tabmat-3.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tabmat-3.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d49c6c448eb81ea60577d0c10acd2546b2737a95bb0a01f8dfc866fc84a1776
MD5 84ecf799631dc282c4a934c0e751a44f
BLAKE2b-256 53042753af6ea879745d86d3a2be43957e6ab249b86ec723e4938abd7a31ed30

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page