Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.1.1.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

tabmat-3.1.1-cp310-cp310-win_amd64.whl (560.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-3.1.1-cp310-cp310-win32.whl (456.9 kB view details)

Uploaded CPython 3.10 Windows x86

tabmat-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-3.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

tabmat-3.1.1-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-3.1.1-cp39-cp39-win_amd64.whl (565.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.1.1-cp39-cp39-win32.whl (461.6 kB view details)

Uploaded CPython 3.9 Windows x86

tabmat-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-3.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

tabmat-3.1.1-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.1.1-cp38-cp38-win_amd64.whl (565.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.1.1-cp38-cp38-win32.whl (462.2 kB view details)

Uploaded CPython 3.8 Windows x86

tabmat-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-3.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

tabmat-3.1.1-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.1.1-cp37-cp37m-win_amd64.whl (550.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.1.1-cp37-cp37m-win32.whl (454.2 kB view details)

Uploaded CPython 3.7m Windows x86

tabmat-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-3.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

tabmat-3.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.1.1-cp36-cp36m-win_amd64.whl (550.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.1.1-cp36-cp36m-win32.whl (454.1 kB view details)

Uploaded CPython 3.6m Windows x86

tabmat-3.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-3.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

tabmat-3.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.1.1.tar.gz.

File metadata

  • Download URL: tabmat-3.1.1.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1.tar.gz
Algorithm Hash digest
SHA256 b240424745289e1d3c5354c35bc7f1ff7b48d919aac321b9ac3013aef9edf7d3
MD5 91e934ef2c73f55181bc7dfdc17e420e
BLAKE2b-256 b61450d021e11f14eeb96bbeb6cc05e1e5717540e513c5008f2a7d7621e1f291

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 560.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ccc6f4c8e466e4d08064f116db938a618c5975d480e439bdef7f4ce5f60b802e
MD5 f266ae215527f8c92a15019144fc98ba
BLAKE2b-256 766fc4eb2d2c840383dc9c30ec3e80c178583e93f322e27bda6b96a21cbabd60

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 456.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4d34cddba9512d06f705f0042fe50e0a5aa24944f07b2b9a5da3c3d7166e44b5
MD5 6bacdad0226e2a389ff4364525e692c2
BLAKE2b-256 f04b7f10ae3287bba402e5c2951423949e7c4e58dbbfc2c0f4b4776e1751314c

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86e6681e00349c10d4c5e61d5f5c0dfdbbec50af652be556939c9d2bbeb89403
MD5 dad2f8e4f362f61e3b26ad008775b5e5
BLAKE2b-256 1297acd5e34e8d27b166a8254ca252b1749042d867f63fcfd6b87a9d1c100670

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e31bd6581b4035e6920ee97990cbf23411947c8fa7930768948b403e84dda9d2
MD5 8bfc1bbae44dd01b2fc6f076c3e6c038
BLAKE2b-256 66a8cdb767c4999d61aad59888c752b30688d831c47f99c269da7e2a33fee29e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5843c7de8ab5c0690168ecf6be2b38bfc9c801c973e4f37fe0fb849a05c0493f
MD5 0ed22c137b721d7e54e8d4e50afaa215
BLAKE2b-256 95b177e6a7ea0eb46d84be0e078ed05aa76b0ca42fdef11a337b17452afb3141

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 565.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1cf8dac17bc7fcdf38af474ec941b8e80932d786a47bfc0d75773cdce98e105f
MD5 84fd1728763180705a9f13aaf278eb08
BLAKE2b-256 269fbfd95e7a2030802383f1cfc846983c54c93b066b9151d8811cd655c854e2

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 461.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2e3aa5aa05bd930acc11388fa98382e2b22b1af96312c1ec34edacbeae0a50d1
MD5 0cf3c7fd98116628dfef88e46b5f8beb
BLAKE2b-256 0d403b19259c6d4ae847f3a923bc65149cdcb2158db6e2e09bb7836aca561f60

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78ee5a1f2d222dd0159fd400fc098c4b69068016b1dd46e97329cafbafbe7b32
MD5 2365b0e475738467913b6b02d3bda0d1
BLAKE2b-256 389e3ab1020ec2905b477fa67481f280161b80bce8ccba4109196d0381b161b7

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76f0308934abc9cbb48940b7f849f1e759f0f8471ac4628be186fc35721bb640
MD5 6c4c328fb9c821cc909c89ab28ed10a2
BLAKE2b-256 c71e041bd97507f2e0609767db7c7510faa498a924f52e9cc4311a3bae39c6d1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0660a28a0d76bf17f1e82ebbf0f1aec26cf6ec87a7f78ae4502446769bcfa8e0
MD5 dfff1d30338c570d85cc6a58248f2aaa
BLAKE2b-256 40740c7f55ed0f38488a7bca39816e435e12ba804f2fb319df85fba2abe9c2ad

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 565.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6d7327278af2d6fa89394f417ac8fedc77b4ee8e311f76e99903b856155f2a7c
MD5 7a3c26fdb7cf6e8980a8be64d3ca0031
BLAKE2b-256 c95d12bb029a55b06f3610b9f031c55e17b7bcd7a679d5a510b3953d1528eb40

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 462.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b9c64d2f19e12d2e5af4db118da7b42b60911b5ca3458f84c877328c7a9c067b
MD5 64118cb2b18ac96a17e5803126181bc4
BLAKE2b-256 9c74eaff475bb7265c20db0c031dd9dd3bc7e1ec41b865d9d71b885acbeaaf28

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f09a42ea3d8eecfa35400bff849012e768bbaeca8b5c67df1d57d5f3c4980f89
MD5 5f0e7e6aa00a49f175dd10d8d367c256
BLAKE2b-256 307661fcf1479c988af24e3ed859610e0e7ee35044b7a8db9a492e1686b0c15e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7f06e343e64a7461b84a0f657d11acde7ea2527af5e0f1edd1c18dff6b4dc914
MD5 d7ac56faff3123c23b374152fac68f42
BLAKE2b-256 bf988b9de261f92a78397dd11804a912949c8507838e2063f5388c3de60516c2

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4ed5515c2c89e9411d5baa457c6d973fe334dc667a1c9b47bde2185897191f8
MD5 92f98764fbe2a773209a44930b475d3b
BLAKE2b-256 93614374d73fa8f9269f2d6f28a445c43bf9e9ef6ec4c7ba039bb8aef7d9a71b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 550.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 49dd63419a9642edeadac36a88044a2512e91f7e85f574e30f9e6614d88cf53b
MD5 e1645ae040a969eacf0b1c65775378d1
BLAKE2b-256 74ade960626a8074b66360f0daeb13570fc5299deffca34bddad5a7c8097f40e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 454.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 70b77cae2b1eb7aa9c4d7353ecc2cbeece887def7a243f0d4ff4536cdedde251
MD5 63119811f755950818263d0711f6cbd0
BLAKE2b-256 8da10c91059f8b64969f45c341b5edfe91c3e453a94bda33050740a88a12c90a

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d4d11a95db8f24efc0bb403eb5cb0ebc969c65484c15069116c6cca206ecfd1
MD5 895a6990f92292be1e524dcbe3b0953f
BLAKE2b-256 4721de2bc06149ae6e3dc46ce7fb2a4cee19dc159558ba893553e7818601557b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dd756454dca330773a7d045a9d28e063bc78b348922f15d5fa57a925076cfa06
MD5 3117a3c01156d0faa42841fc718c5385
BLAKE2b-256 8f8570655a3b493d7c2d15c305a14a14a70c00aa2d7bf4fefa6a3ec836ab9edc

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eed15e091ad7ff41f9fbd84bf93bc4acf10173bbe6540fc776089fbd7d42fe00
MD5 8fa079df01525cf2e416896a6d34a2c2
BLAKE2b-256 223f0a3774341aa34e6c296e3e57fcabbc9f95b4f50d9c2c05d4d27c350e11a9

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 550.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0ec8e1ae75bd867fdb2c1ba98f3601e7bc3ec0d8d7791cb6ad2efeaf6378ef22
MD5 15759f965052c383cd542450255a1918
BLAKE2b-256 51170a6f20c23220adde6c12e8f36251340ec120a8b0037e57de030ebc2fdf02

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: tabmat-3.1.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 454.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tabmat-3.1.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4139da1c4910c6b08feff065063b09bd28e7426d21378e7266f69da27805a9be
MD5 50702e7d88d305b6abd4b8077f27253a
BLAKE2b-256 5b02eebc02a86ea30b5f3aa1f48a01ba3a60a93555b0b93367f88f907fc23c6b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18f6f4b5dec3cac1b7c0d9638bf79ce91f4f11cb4df2eecb014049fea5a590d6
MD5 6426c92364077e5248a14a204f71b4b5
BLAKE2b-256 183f097b59c675c66cec9d43d39bc04d088ebd9978d74697d5ea39288affea8c

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cefb59e5e2f5122703e4429293699db4f3d5aeb335e99fedec041f527d81db49
MD5 5219420dab93f12b33e5a08805194001
BLAKE2b-256 beb9d50da9100e86a171ac01dddcbb9203a1173db6374c2f6cb10911e9ec3cb4

See more details on using hashes here.

File details

Details for the file tabmat-3.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f6dbfa48810b9552c61c98ad48066b4ab6cff5d09d6ee655f138a67b015a917
MD5 94149f36b0d716509b0a0725248d0da4
BLAKE2b-256 dfbc0c8f3f0357905bceab2d05ab4bce26e203968dec82c6586da0abdf9bc5b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page