Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.1.10.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

tabmat-3.1.10-cp311-cp311-win_amd64.whl (553.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

tabmat-3.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tabmat-3.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tabmat-3.1.10-cp311-cp311-macosx_11_0_arm64.whl (611.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tabmat-3.1.10-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tabmat-3.1.10-cp310-cp310-win_amd64.whl (556.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-3.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-3.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tabmat-3.1.10-cp310-cp310-macosx_11_0_arm64.whl (621.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tabmat-3.1.10-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-3.1.10-cp39-cp39-win_amd64.whl (560.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-3.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tabmat-3.1.10-cp39-cp39-macosx_11_0_arm64.whl (620.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tabmat-3.1.10-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.1.10-cp38-cp38-win_amd64.whl (561.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-3.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tabmat-3.1.10-cp38-cp38-macosx_11_0_arm64.whl (606.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tabmat-3.1.10-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.1.10-cp37-cp37m-win_amd64.whl (547.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-3.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tabmat-3.1.10-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.1.10-cp36-cp36m-win_amd64.whl (547.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-3.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tabmat-3.1.10-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.1.10.tar.gz.

File metadata

  • Download URL: tabmat-3.1.10.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.10.tar.gz
Algorithm Hash digest
SHA256 1996fcca75535219bfa759194bb7e2ecd896e97163645726027b6ebb4df9c5d0
MD5 a827c9c143b675205ac53aeebcb2b20b
BLAKE2b-256 49722668c89c89e85fe36cca826afb270f18d01ffdd0e23e439625f369ba05d3

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 553.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 25d7dbd9aaee4ceca83142e06ace012be1fba6dc22cb509b8e650c2593641278
MD5 ee6ef54895661975b80030434ad3c16c
BLAKE2b-256 b81c5ca8a55e321ee9b79e56c8bf673a125765c3324c208435a5901409795d21

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d2a272d9ba18ec99af5b177db76045a89f7c97aaec3880f7a9102a073bb5fea
MD5 2c7e2bc2ff4131e7911e8e2d4cd545e7
BLAKE2b-256 699c1e43509251135295f9d13bda7bdfafe8a2ec03a08c5ea2b412964d886108

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d869d5593bc5813700dbafa14c3d9e3e9101e08f8d3249fcbd128924e7235a92
MD5 b497013584bb9aaf6d3443757269ca4d
BLAKE2b-256 e7e6830ff3cf5750704aac7245ff173c1511917fe1b137075d10d1d9045e9e77

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72ecfe5dedbbc5274d2232c9a9a21f40f174d58fb682020e6ff398ca266da9da
MD5 af4a7ade13c04496540faa3c651a632b
BLAKE2b-256 94c0d095ddc1f097758871def60cf32e6ba706e136e00228f514298148a38930

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65499ee5eed5b159d218bedf586b252adb274a03c2adb5f722cd821f97422993
MD5 5e69ec2d2edd329b7f37643150a3edec
BLAKE2b-256 ed3152fdd6e03caabc0762061f8ecd4bc4a6e1dcb6fd8b6c046f1a2b85199fc8

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 556.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6aa5487965b401a891b326e091bd451b98a490f01d8a501cf235adb42f9a4b3a
MD5 a367f3fb83caad692124e4e2fb3db6a2
BLAKE2b-256 8f79853dab17864ba50f7807e4b0518410350784b475758f6efbb56f368ccd9f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2542531ab995fc45ebbef2609be5b5cbdb516868dd9b607f13e13cbcfb516b0
MD5 bbbf2354b416c1ed431f4772af0bd127
BLAKE2b-256 b16b70442df734f13227636444bb3b2b343b3aa3c2b1e9472e0609881dfc9661

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79413990c4cf161263786896f687c5d5a26d84f867f600dcfcf8a73a707a364a
MD5 ad71429f9cc2963ee538ac519fa2a31a
BLAKE2b-256 ac9fec74d38ad8de41c07818ba11117df390e5a29a8127aee746a6cfcadb17ed

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dba6697d5add5980dcee8141f0fb20f7263a3b28228cbacb975d8ef68d4a6f5b
MD5 080639b3e078112977b93325bd5c6e19
BLAKE2b-256 54de12e7aa998d71260402ca239f278c205b9150387ce2437a472b4f1b9128cd

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 718f7434ba188353f1c4b78592ba5424b9f70221ed61e65b00b88d0fc1c51c8c
MD5 78405590b8a5c6b31b3b6de45d1c7dfb
BLAKE2b-256 54f4d31c5f0acd70a3617ec5562860817a8bc8d3f1ad6d8daac993f307b3de8f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 560.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 411f7ba331f23dad08dae1d9786a6d34415b508f6e1e81b4b442296c649488c0
MD5 cccb7097475fd9a8bac3b5c2e507b911
BLAKE2b-256 acbf746d2b9e9401ee259995a2c4acdf933735a92292d9bed7ddea8c4c09438e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a20f7b4cee4cfafa5f9506fefd5b18b27f147f096830b416d9d45e7f362a656e
MD5 508c1461dc9e0804a926ef024dbdb507
BLAKE2b-256 6646462583e84715a94cb563f6f4607001f42d2ad4d2b83b536b599acc35b97c

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bdad66bf20d27302720675d02da5640336772a0b28b393256fcbe3b5f7147fc
MD5 07154bf1714ce1119ee5a6dae5d4ed54
BLAKE2b-256 daba541f272398f05747160464e851d5735695542190324906f8b5ed95df95ee

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b15181ed7e25e2174de3e6ab6b06c288692ac52a89a86a23de4462a194b2143
MD5 ec12672479569fd0e0e8031b82f6be12
BLAKE2b-256 eb2b05a9b0aebd97fe780d6ec23ed3ea990ff861dfe7b0479f7354fab60fe51e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eef3eb92030dd78f7fe0a26082c66a81e21bd25aafca9ba2d3f050ebf0c9ce55
MD5 44b84cb46b014efce657e2a964073a1c
BLAKE2b-256 6037b2388c821c611a7706c6fd84f69abc092699f09471ce4b981d8be5b50764

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 561.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b0c8b1fa76c47d9fc439e2b97b77511dae769555810ec40d9393908b807fcb2e
MD5 72bbf544bd98b9d4d71357dd6307b154
BLAKE2b-256 b2419ce5e1f71ccb77c4b09bf986f70f24475fe37436de742af55686414c08e6

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4180008021530351f68b1bae7390676015bb44dc2fe162562329b2343fd2459d
MD5 c9f6dccd16d37d63a5f44ee7fcdfa4a7
BLAKE2b-256 89ba4dcc67a440dabf642ab1e8954f9804d82a5047f2801f74966538cd17812e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 253d830a77316e35a88fca0e96f387bedae892af7ba89ba42a0f03dee3d26985
MD5 3902dee1adb4c5f86148ec4c1c1d7b83
BLAKE2b-256 9c872e34cc2ffbfe4cfc78f6cad811a3ad7da224ad103cbee096785124811f19

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 293905d3675051938946615d090d518746e4535d6134a054d5266415468838ed
MD5 cd96334533109611767e45dfa1942d7d
BLAKE2b-256 99cc289c148272944d3132b81164af7c5ca294151a6902b44a8b5bb4813e2229

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9d4dfa856551ce204ee3abcf33b55d63c8b4d12ea438b0288b8821d4564849b
MD5 bfc30eaea0f304fefd8dd4ace4273322
BLAKE2b-256 a51b863874a75ccd21dd50c1ecfe5a37f80ff2854dad4b6dfdefaa6d89b34be2

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 547.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5ebf19ea413680fabadfd1dcce5588d48cf762211e503c56a8eb0c1f3569f9a9
MD5 f8b1a9690e637fbcaa6366d8dd2466b3
BLAKE2b-256 b6ebbb3d3f073a1928890cd250b5afa491d762dac3c85e3e5ff29bfb9542023a

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c01a874f62b285804606e02798cf651b33dc52487afd43bd298acf72544bdd0d
MD5 800e5d594ec9dec5606387de97bdde2a
BLAKE2b-256 6793b3d84191fa73ce10a1b498912811da652921f6f498ee796b0a51c9fe48b9

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3358ce9e09d5a0db666dcf1f45c27a487922f69b210cd8fa2021489fbcfd41d1
MD5 23c4076df15755fffe3fd38005bf9b58
BLAKE2b-256 e1af953724129f9b907c7a906f97ac5e38b7f9a9c20fabca083a91145b20a22d

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80f41b4b0da2b0d9520c1a967879f63865d977a95e65d28192c3a8f2cb413240
MD5 8903214b675c565b483a30a2dbeea493
BLAKE2b-256 d5a263a8c9142d063c5640a982e0c2bbcb79a4d2952497c480bb4a69c371b0b1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.10-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 547.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c0fc2f1ac3e4face45bcc644d49437fff88120f2b3ce755eaec3b7aeb200885b
MD5 185a3ce2b175d713ef7d0ddc0540c528
BLAKE2b-256 2516bd116a7f53c23b909d4a3443bfc1c858d5c698ccaeb682b1fd1bb9cf53c4

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30ff28ad92d5b7a7e496ff54f9509af7a61a31ed4f6c9b6206453b8467ab1c2e
MD5 aa204fef48702657dceafd195d72df8c
BLAKE2b-256 fabf8e172dabf61be9d120b94572d8811a9c2f912729a6a8855cbdc980f4396a

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e832afe43ed3b286f80a373e5e6f3b2f000f20a8cca1bd22d083a5b0f3cf1b5a
MD5 4201185eb50aedc30c868cbe29b27b4e
BLAKE2b-256 7cb4cdb958ec55caaa36bc378a5759b7ff4f6c802f6db8b05f130b35285b127f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.10-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.10-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1c241c8e4fff3aca5c70de70c01cb67cf01ae3c64b2a70af7c5851f1d25cc1d
MD5 747f8caf9b4e68f22b7552345d909210
BLAKE2b-256 8a7530f496ede97e3871b7f38458fa21570187e15e6799cb2921d9b87b43364b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page