Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.1.3.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

tabmat-3.1.3-cp311-cp311-win_amd64.whl (563.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

tabmat-3.1.3-cp311-cp311-win32.whl (456.9 kB view details)

Uploaded CPython 3.11 Windows x86

tabmat-3.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tabmat-3.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

tabmat-3.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tabmat-3.1.3-cp311-cp311-macosx_11_0_arm64.whl (590.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tabmat-3.1.3-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tabmat-3.1.3-cp310-cp310-win_amd64.whl (565.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-3.1.3-cp310-cp310-win32.whl (458.3 kB view details)

Uploaded CPython 3.10 Windows x86

tabmat-3.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-3.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

tabmat-3.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tabmat-3.1.3-cp310-cp310-macosx_11_0_arm64.whl (602.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tabmat-3.1.3-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-3.1.3-cp39-cp39-win_amd64.whl (570.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.1.3-cp39-cp39-win32.whl (461.6 kB view details)

Uploaded CPython 3.9 Windows x86

tabmat-3.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-3.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

tabmat-3.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tabmat-3.1.3-cp39-cp39-macosx_11_0_arm64.whl (599.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tabmat-3.1.3-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.1.3-cp38-cp38-win_amd64.whl (571.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.1.3-cp38-cp38-win32.whl (463.7 kB view details)

Uploaded CPython 3.8 Windows x86

tabmat-3.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-3.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

tabmat-3.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tabmat-3.1.3-cp38-cp38-macosx_11_0_arm64.whl (590.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tabmat-3.1.3-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.1.3-cp37-cp37m-win_amd64.whl (555.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.1.3-cp37-cp37m-win32.whl (455.5 kB view details)

Uploaded CPython 3.7m Windows x86

tabmat-3.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-3.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

tabmat-3.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tabmat-3.1.3-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.1.3-cp36-cp36m-win_amd64.whl (555.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.1.3-cp36-cp36m-win32.whl (455.4 kB view details)

Uploaded CPython 3.6m Windows x86

tabmat-3.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-3.1.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

tabmat-3.1.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tabmat-3.1.3-cp36-cp36m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.1.3.tar.gz.

File metadata

  • Download URL: tabmat-3.1.3.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3.tar.gz
Algorithm Hash digest
SHA256 77eebbb6779e400c435a46937c92f0cb30e1975a5d38fcf3fd0a37ca5cc5aec2
MD5 f7755a7dbdcc2db5b0447bb645c876db
BLAKE2b-256 7d29959800aa2266c7287932744423687abbcd6e716e054ba38954e1a6edf421

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 563.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ff75232d2c1413aafa96c52332986490a8009c9c95c2fa62ea6cc1a1746866ab
MD5 e3a0b60f1cf5e3aea8559726159d702a
BLAKE2b-256 6cb71425283dae9345ed0012e3aab495c181c7085e1ebb2139bdaa7e3674cc95

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 456.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 01b77b1218aaf69b76512ba5f34ec3dcc10a3dfbfa272d5c158119fa8cf249cc
MD5 2f98344767b4025b5b9c915088526eb0
BLAKE2b-256 3e41a7e0cb7bf35028be8822b8dd8f73e7f6283163de489388b4eb6e42663aa7

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8cccda7f0350afe88a2fc5e84a1e1fa0e36494fa18076b97d9ce703b9234c9b
MD5 252955609902e483d5e7b6a51ff6188b
BLAKE2b-256 1c80698185d04d7a2e59c17ee2fd54c246e3b55dbafb4c2c3079df7c722935b7

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5ff4f6e698fad1280ac80053e8bcfc46fe46a078f92dc5abc3257d577e549c8
MD5 c4a3b029883f2d4d7c80ef8fecb50d99
BLAKE2b-256 069f45cf19df640570c0cc2b6160a1659f1ae523debb48232a86596fe1fbb759

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 10dcb1460e853a8a4bc93b641d53872e0336507cdf7ceb50a08d72164e972f1c
MD5 90a4d439ef45c9c0fd50cd009502d26b
BLAKE2b-256 54bfd4059ba86d08c59b1a55eb5ded91aeaf3e7d486a86f49cb736fe889f4198

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7ad466531d9191ea0dbf9263afeed535c48d7ecf74d4004faf9e85eb1ff90931
MD5 abee861fec4c7fbb3e7a0b2be56b1377
BLAKE2b-256 927677e26bdb33d9b1f50578e4ef062d50a5c0a6b3b4f5677cc9b7a153a323b4

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0210898dea8a305420aa123f9231f4188518aef170ff560822ebdeffb456a34c
MD5 325f457e61275baf970873c7afa2ff85
BLAKE2b-256 2f0c3e4d526bbefffa5ef945cf611283a8052e6c46b93d84ac1d3f13317635fd

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 565.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c9210fb211cf3e459a67fdb2681202371d5a419ff6ce663ea86ec1cdee8756ae
MD5 66e727a2513a0a2486e467023db941cb
BLAKE2b-256 1423a3140d05ae197c24994ab1cfa0073351fe284ff9ac493b33f81130727554

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 458.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 221eb3f266e306f50bb03b3ce73f5a6c545bc601a655b70ffe4923919b55eb45
MD5 a85cabf6b0d5266a197d92d70e9b1f88
BLAKE2b-256 adf92a75e92322a302ce01078857baae80f77ab6a1f474cd6e4fc2bd8a11130f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9dd47e922a9f7685ff1189cf9fe2ba497508cbf1d50440deb2e87d588e8a6ab5
MD5 e0fe2261827b719037599f38a0ec3587
BLAKE2b-256 b2e1e6c0a0dc66730cf071de5e3565c297b2a61d6271a2b89956c2ceeab64c82

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a199375886a4cb048746cd4860c6dda90e6ff08306224200e4a2fa12ec2814a4
MD5 baf2896445cc25628843ca5d32d94ccd
BLAKE2b-256 8e49565275d39bbdf398474ca4151c0c5e6a1a9ae7909ff0230bdba6dbc296bb

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ff521ff241a27ae2bdf0795c9e66b6ac91c8c231f89d528cc07e885db8380a3
MD5 acb4979107816d5ad38866b151f8bd6d
BLAKE2b-256 312153773befed0af5105c8950b17bc4e4b5d3670000a51b7d43ea00014371d6

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2fd31fbf104a2546f45464c906562273d32b2033fafe711fde895517ad0b4a16
MD5 fba94584ff127870355f00041e454787
BLAKE2b-256 b79ef69db5fb260e0befb6553ef6d2f3a23edd52955a6d930f0e331a6ad4ed3f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97be86f4cdef577777cee1c87f546c91616e12e07443e4b8daea54d4efc927b7
MD5 267a930d63c7bad03b32575dfddd798b
BLAKE2b-256 f75848a049e6e9977d67b6915ec5eb212d2b741dde8d75d206b5a3f2a3ddcdd8

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 570.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a91b52031a0c8c6a31cb5fbe9799fdfb805fc24d0914d2d07a900bcaef065441
MD5 ab778339df0c58f955e8af3f1e621a55
BLAKE2b-256 bcbd3ad036042ef06d3ae162b19885cd0b2e1130353eb3a091ace3a50734b786

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 461.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6180141f2e7c2cb1af2f5f4d8264c4e56a3d7cb1fc7a4fbed1e3c75e2c950318
MD5 f4162b7f5c153eb06c47fd88ffc72c99
BLAKE2b-256 ee5fd7381295d164d4880082b358e54f87a0b655d27436d72b25017cf421ebf4

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa0cef5a98531d7f401366fd0400ebbc2c3a273aedcc6429adc49585f106fbe2
MD5 21eba0539c0d2754a00e59de0377a504
BLAKE2b-256 ef10285dcb504e8d51536be7bfe67b0d15e85e7e5a30079895a4229c91860629

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 33d0d4e451c69a1822b87405822d9600a676b01e48e7057603c2946319d22038
MD5 d7785057eea4f98fc3183d255c6cef1a
BLAKE2b-256 c33123b869b576580c39b8ad89dbcf0c46b2a7b3b317d4d16df887ca665dd39d

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b69307ea6aa14491c4010c4dcc06a642b7fd3bf0e127600f008ad484d434cd0
MD5 f3abc6d2035c126af3d7bd1d4b6d077d
BLAKE2b-256 4d8b44fd57e3153d758baac8801618048d46091126be4074fde68b94141fcd77

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7270bd4ce5c7076966506c3d52c88411679c494f00f92fe581b343bfacbd627a
MD5 49cffec6b3689bee9625ed92a856b951
BLAKE2b-256 a5beec988ad8d84919cb33b50b9c95fbf392a2a8ee9d1f1c5f12df9b27ade3e1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 389b89bcfd7b06654497252f4d6ff59de39ec617c774fab47fe64e203a2d700a
MD5 bed913eb31249b6cd9a55fb39d91e7a5
BLAKE2b-256 07206ac00334c930cb944ab1811f74eb015a109a5c31944a1362ff4646c12a88

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 571.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6a6a672e07a31576d6626dae15cb340e1e8eebe41e7056a7213dff95793819c3
MD5 18e4ae5da9d963da831547a421c086be
BLAKE2b-256 47780dea0f991d511eb91bcfe4a88d9637041a000305a2befcda72c94c5ac503

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 463.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c1078b6759f6d0078c9355977c2455cb5234fbc7c7ce641cbd3203d449cf4717
MD5 d0c4c825b3d37b2b8376db5a2a9f3d5e
BLAKE2b-256 6aa4c550a448034d4f9a0122ee21e5dde5efdabbc4522573d3595d63e10d9f34

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32636a73a3dbdea533d5e6116ed21d87490d9c0fe1d344a37aa753dad51f5aaa
MD5 3d43b1d1903c9b9938882a229250377c
BLAKE2b-256 ddb9e8ceb9dc4832839c29dda19b0914a4f9abc347018f609f3d7fc42c3b2bea

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4d3ac83023cb1eb306e5c3a62e29460a6b5dab70db80f494506eebbc3bb996da
MD5 1c534de02181c891728807678e084013
BLAKE2b-256 7c92d99d6cf415806e1067c106c7dd4fd4403077c63324703f61ff35bf1e6922

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fddf229b7dc361125512cd785788c4109f06671cbdb7e0211d2d128c76369270
MD5 7a021b753d174656dba994bd8af79e76
BLAKE2b-256 f9fab29d17a44a23432dc13ec9a9993a0b1304002b683bab4cbb7557001612dc

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4665763ee381795189cb4c396bf53b6090a90b3f3a26c8c0c71900e8ad05fa3b
MD5 9945993c62a3f482b48e439def9ee707
BLAKE2b-256 4942b7d0aabc7451d8dd8b291c50c0f2150dca0a4b43f8480a526020e53f0fda

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb60a95917c0bbc63d203ce630c09fa00a8eb6956e09959e832bd6a8a502700d
MD5 f988f70b671e8d97487c37c9678d4d23
BLAKE2b-256 a2d7a8796b5e34abee56dff4c34ed671588ad0482da17924bce7b4c15d5fcc49

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 555.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 09d21974ff9c47b04e44e799f4d8c49fbe29062607f04fbd10dc7f9a3de2baa7
MD5 15174c266f0d1ce1b01d5b657d64dfcb
BLAKE2b-256 df1a91c6117e1be828ff09e0f5bb0bddc47a1603eb039d880b0c049068eb6fc6

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 455.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6f542cad467363c713d72b5e8f21604f68ba77780947d3e75bd4b437bcecb20b
MD5 2916223f69bf66bfb833b6d74f23d05a
BLAKE2b-256 1bd703b1a695f6a044edbf4a52233bc47f863bf8ad4bf0efba495afaff1d391e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 925a833f989417e79bad2fafeb69d7a78ab437c69ed2cb6279e10d3040a37e85
MD5 00ece5d8886effd7ca4417f78a1b00d0
BLAKE2b-256 7001b0de9ab1f834b15f74464bb71a13ea64308528aa537a7e33f92f17e8ae46

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b027e7f6eb49a786925798c72859476fcc8ae4a6be92efc3d28049f01787bec8
MD5 5a0890d696da819796aca5be754b0929
BLAKE2b-256 2d295854d5c16244eafe05052c2dd74e8c4d6f903729998508daccc156709cdb

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d938a867c9f81c1dd96440c78cb046dcf6b97a49337cfca536c74075ce473f7
MD5 d899a8927d01cfcde96598f0109bd488
BLAKE2b-256 43070128d230f1d96ce8ceb39929cb9632a682265a6b3c4b69bf3dfbc4a1647b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1599bc41dfafea222de5e0653dc051b34ed6cfdecab43fe62b1270d44eb431a4
MD5 b973d1c0ed762b41d4075b1c41605089
BLAKE2b-256 d6728ede06bebc76a5c3198a4b9db33bf7050c003fc9792d9c438f1574f88c98

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 555.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 79416e9eadda51e7e43a7a7e68979d6533274935ea3ccb6d8403ae7b5ff46383
MD5 fe14a76eea017aa0970580d108d16fe0
BLAKE2b-256 b68d42055ae8b8d414e0f7ffd03ea9ce9e7a1bfde5daa888df566251341acaeb

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: tabmat-3.1.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 455.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for tabmat-3.1.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0346d306fa9272035d809d8490435fc1c4fec3f560f204efc355355aac13a7d2
MD5 5ea75a607f5d8987cc1dfc69c647d421
BLAKE2b-256 434f91650945249700e820601f3557247ac6dc334fb56b3ece93e1984d7f88bf

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 102dd9ff2017ba6023640911c8cca34f90db5da99cf07a3e428e35ab4ab8f1cc
MD5 167f4d387fbe7af1e1e5c4c5e1cfa83d
BLAKE2b-256 a54a075803a9ba602bd29e8e07c1f65cd86628ee046359b3df06b3e16d4819c7

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ca9f899afe9ecc0642c954c68393bce1a30c581f7ef7028e4a8720d370d540bb
MD5 ddbeecb2e73260421366d2d97fb506a2
BLAKE2b-256 3bf290ed1ebb670c1dc5910c03587d737d5812a3e1c1e998c52ae6cccd5722f6

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e84dfecc27551299424d4ad7d02fc78d0022a48a3f574e639760c87f9e21068
MD5 8fdd1929ff8e58c0c02cfb38c19b83bf
BLAKE2b-256 fcae1a26bfa1ae3b03c566f6751952df64334bdbb18e6c6505f96cd79fd54971

See more details on using hashes here.

File details

Details for the file tabmat-3.1.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2101588658fc3761dfb8365cb2fb14de1c30897d67f09f8b72cd6f9d45e95a9d
MD5 88ba6c804ea4301274027eed8b21d898
BLAKE2b-256 cd02c87b1d090bed9ec994a1761fd8800c74945f210e7b8ec6371be6fde4d665

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page