Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.1.5.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

tabmat-3.1.5-cp311-cp311-win_amd64.whl (563.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

tabmat-3.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tabmat-3.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tabmat-3.1.5-cp311-cp311-macosx_11_0_arm64.whl (619.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tabmat-3.1.5-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tabmat-3.1.5-cp310-cp310-win_amd64.whl (566.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-3.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-3.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tabmat-3.1.5-cp310-cp310-macosx_11_0_arm64.whl (629.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tabmat-3.1.5-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-3.1.5-cp39-cp39-win_amd64.whl (570.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-3.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tabmat-3.1.5-cp39-cp39-macosx_11_0_arm64.whl (625.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tabmat-3.1.5-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.1.5-cp38-cp38-win_amd64.whl (571.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-3.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tabmat-3.1.5-cp38-cp38-macosx_11_0_arm64.whl (611.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tabmat-3.1.5-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.1.5-cp37-cp37m-win_amd64.whl (555.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-3.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tabmat-3.1.5-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.1.5-cp36-cp36m-win_amd64.whl (555.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.1.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-3.1.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tabmat-3.1.5-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.1.5.tar.gz.

File metadata

  • Download URL: tabmat-3.1.5.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tabmat-3.1.5.tar.gz
Algorithm Hash digest
SHA256 c204880ed9eaecf2e501686facea755970d7feac57e9468658e5ae3ed760d8ae
MD5 97ad55e9f37c957d08e5576059142f5c
BLAKE2b-256 2aad55ac2f63fbb1a2145181cf16ef03f2d38c91bbe31f440c497179c442f71a

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 563.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tabmat-3.1.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fbedfdf265d19e9f6f709f9428028a225273abbc0d60ce121132341bfdb3bd19
MD5 a2a0c59094375eb68ee37d4582181d04
BLAKE2b-256 ab4a20668c7d18ea2dcd775bbaf74df74162c10f44e7f80701f331a8cc2543f1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dab289095c415c3a11dafacadc27895eeeb25016c0def7aae9df39206ff0b98e
MD5 9c4669a47dece9df8c4e023f53919a5c
BLAKE2b-256 be712a9e66e04335f00d553a296de8836c2cab6b4a9f3bf0d9fd5484a5447e22

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 69e623d470590354a76e000fc2ba3ca24b0a713cc640fffed0d01dffa64310f8
MD5 7aa3bd6cc36e29dd4c4a1e7dad37eabe
BLAKE2b-256 2c9a16977d9b513321d66a7c403eda1ad34845397b595971a80dc0eb89c0cc17

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2c2459a00a1254d70203979af2edb0457e42cb34d707e6c36da4e4e007e9b4d
MD5 69aa3049bc237b63f5016e2e8b520575
BLAKE2b-256 a12c1183d736e0a97800138c74b6fbb3eb7afd3beee91d6ef1e8662a759f0d5d

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 924e44010308aadf50aebf64b30055d3558d4fac310edaff961405a17f8a663c
MD5 a875adbfd689393406672d7e61ff0aa3
BLAKE2b-256 7a77c1f6c4595a1646899c268e3923b439019635e264ee058fec90966eb4d9ea

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 566.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tabmat-3.1.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6868d66813fa0765ce92b37ed2c8a43d80adcbbcd452e754d216ad03752d859c
MD5 1398ef6dfcaa6ee844170adbefaf2d42
BLAKE2b-256 cab1a1e60d8d7e6af4187ba6fc755f1e7280b3aea040d010e9ff6961a91d8f25

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47bc55dac9a2cdc6db786a5d6cf33eb4e7a607ed0e73355cf7438add04d6b37d
MD5 10e1fb1bac5a1e2dc1eea4a89e59abf2
BLAKE2b-256 b729ec6a74f0c173b6e4108e005765368aada694f41b5552c1f2daadc6d3c6eb

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0d4329fc75a35fba5ec27984242e2fcf77044aef7eb46064e31dfe9bc31e60e
MD5 96e9f34b03348cf58acc05d866135a9e
BLAKE2b-256 ad6b0347631fe288972a0ab91efd3e65c54a9804dcd0b2cba5484f241a1ddddb

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4183921d525432d02d46c5123932b2fb54d2a0fb0709cf3c08cb6e41015073f1
MD5 8b7e2ac3e109c8f3ddc875af167dac03
BLAKE2b-256 f31627525373ba89ae39056e9c1d9a6f48be503f47a2b477300f0dca531638bc

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68000e478a8a7aa5af674d49c00b20557d7d12b0e1476d99c49f40ae45cd0e9e
MD5 058e0e4862f5849d9adecbb35ef8c57e
BLAKE2b-256 f493fcbc86af03ba180f080eaac75bda7ec297ca4311aebf109f4eba59060807

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 570.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tabmat-3.1.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1fb1736b315e8d367672bbe127cf1ed7e60e4550d9ec5704de6e2cf094f0744d
MD5 07f591bc71771b7152a7b4a5eba66933
BLAKE2b-256 92ab80890d5c61d40f73c2921887b575b4e559c64c45ffec9f5f3eec719eed9d

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afeba400ff5405352bd1ae27f0777c6b8130b28789e04b277f1959b0fa7e3ec8
MD5 c55b4775c88db5dda7ba9feb293c61bc
BLAKE2b-256 f834f5055154fc6e191d5c400d1d51e774091d3fc830e30282e7bc5397127c73

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea41702b918c696cc8afc4abe27c3ef591ad8f8c7ba0e7b504598e77902b9f45
MD5 d7bf5dba4d852c3c6b3010ac6e10b8d5
BLAKE2b-256 4765363ee3cd4272b27b7020830aa65ed624318443eea5ecfaab16d4c0631b8c

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a76c6e393aaf7322aa142e5940677fc6c3014865d234aef08a9a4db39014c3e1
MD5 4843d36922e1cc079531e95562b573aa
BLAKE2b-256 49a19c6443db177dba96846471b37c92b2413d5f0e1817e6807d993b139de91f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7caf359f263852033366b2bd04e1f4a30c5fb3ff05f105411b82d346a55ff33f
MD5 673a79987cdae9ce1398050a37dcb665
BLAKE2b-256 fd306aa24fb1aed6a18cbc56d05adae3db977fa4f4e6db59b8ccb956fe27767a

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 571.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tabmat-3.1.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 671943ee4e5307a0deff38e597ff3279ff90dce07d0bbc673363214f8a25238d
MD5 11135ecea99cef851a054f9ab18340ea
BLAKE2b-256 4249d6bb4f5aa8857fe3bb320dbf830ff9f69bfa4f200c6e3625e1e465f37f68

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc23fdbf565900de6019ea30440f24e16d824174612953f98ce5e75ea708e257
MD5 557fd63d8a8fbc2dde3a3e6ae6fcee9a
BLAKE2b-256 f9064abb13eb0510457712a688d9473f3267c76ea2e1fe3d6b61ce5fc540f3dc

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ffa862dd4bf81e88b862770757be401990b8b69c8f1a60e2bdd6cdb35c3b523b
MD5 66556b1f566e6c291169697636697b43
BLAKE2b-256 1be3ddb84ee5aa60bd5552da4287fba91f46555fa28336398ab49bb55068a5d0

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 038d35e01dbd117d31f9219fb8a901e7833ba3da69e4457b82373a048495836e
MD5 9b46f523c2dd5f046daadc6acbcb866d
BLAKE2b-256 70c9839f1b92d3bfae630741bbcd8069c8f1453d774745f6676633d08b700146

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 953697281e3ef268d33aa9e0047b77053436374cfd3922f526dc1ae23b906a06
MD5 0ad04a9f8df766c2cb8b901e6e94ecdb
BLAKE2b-256 919380ddff5dd06a308528b09c36d99c083b02aebe569c10453e5e4c2b32a8ed

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 555.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tabmat-3.1.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 89f9dfeac915bdbb1c2fa06ccf03e23fd7d815cc01738c7cfe9e1a9fc96e0037
MD5 314756c886fa27d92cf4e522582cf3e3
BLAKE2b-256 a735f6f58ff456b3f03be2629e9180054404dc9f5791949048b4e380245c2e87

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2eea6fa6bbb1b2cf6416adaac074ecfcf5b4b4281db95fb13e4b8c8a4d337696
MD5 420d687609907d0988fabbf679c3f821
BLAKE2b-256 4b0c6a32d31a626daaa24f4b372578d0ce3de5dbc5cf2f7467f26e1f80376bf5

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bb1593ffb054da9b3487d592e4889041026dc060fa6e31ec97593feceb0bfc8
MD5 9fe734a83a4095c58231c7d21687eddc
BLAKE2b-256 c3d18dc6f8c42f772ad1c45d85025ce5b686f48e73a7920e19d4719a9aee315b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 baa7f96ef973a91b0b45392d8161ad3d6803ef752d36726144eda20df22e51e1
MD5 823a3090f278fedb91898c640abca18e
BLAKE2b-256 11cc3f703435c6fb23a16d0ef7a36232ce095d57ac8720b039a6675dac5a43c3

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 555.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tabmat-3.1.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d94d373a9e4b2a6334b4bbce0134224d410f3e95497a4a8930529ebc50c5e66b
MD5 0e92c5a49b3e68f5137791964388d95e
BLAKE2b-256 a103e0dd2e3ce4fd1e27c7ce075e8e1f001b742b852a9e1e0a52d1451ca86f87

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05290529fd5eada1befaa334b884c7e695c3657eb5deb268a0ba82ed1e247ecb
MD5 0eef45261a77bed8ab23c482d745a999
BLAKE2b-256 40b0eb7f3dcb761e4a83d0b69830ee9f51757b694e7362c556df882d87cc4dc1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f63ad4fa552cba0dacda568e078c185faf0f825c9294e5ad06a5bb1828d1dd9
MD5 16ae039d7c32af318caeb388612eb5ea
BLAKE2b-256 9e0fdb0b944797176ffa627b022872778ae3fc4e883c4e9301dbe2d632e555ba

See more details on using hashes here.

File details

Details for the file tabmat-3.1.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 152e594e0eab0e8f50f83be50fc4be3937f8e771dceea1a87cde66aae880ca97
MD5 9fe4d6fb1d71a216b938c8ca58d75be8
BLAKE2b-256 1894ca8daadd4bc2c27f65ce49522c7bd87b7639b5f0b9a24d155db05bf919dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page