Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.1.8.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

tabmat-3.1.8-cp311-cp311-win_amd64.whl (553.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

tabmat-3.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tabmat-3.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tabmat-3.1.8-cp311-cp311-macosx_11_0_arm64.whl (611.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tabmat-3.1.8-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tabmat-3.1.8-cp310-cp310-win_amd64.whl (556.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-3.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-3.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tabmat-3.1.8-cp310-cp310-macosx_11_0_arm64.whl (621.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tabmat-3.1.8-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-3.1.8-cp39-cp39-win_amd64.whl (560.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-3.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tabmat-3.1.8-cp39-cp39-macosx_11_0_arm64.whl (620.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tabmat-3.1.8-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.1.8-cp38-cp38-win_amd64.whl (561.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-3.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tabmat-3.1.8-cp38-cp38-macosx_11_0_arm64.whl (605.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tabmat-3.1.8-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.1.8-cp37-cp37m-win_amd64.whl (547.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-3.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tabmat-3.1.8-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.1.8-cp36-cp36m-win_amd64.whl (548.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.1.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-3.1.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tabmat-3.1.8-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.1.8.tar.gz.

File metadata

  • Download URL: tabmat-3.1.8.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.8.tar.gz
Algorithm Hash digest
SHA256 a8adaa8616a1e883cc48fa04c37d6c3964475a9cea59c769c560aa61aebeb030
MD5 b9577c635928fdba61d189871e744d2b
BLAKE2b-256 66b71a8bc5ef0503bb0e6f70674de236f8626bb744d7bb4c48834a7c46d2093b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.8-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 553.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eca0922ea12a46429fe6329fe8baead432b572e6da30f02b588fa4b131f7d88a
MD5 08a8e80c5bfac92bbe6cfafc9cfa4899
BLAKE2b-256 5fa018f38cb3d2f4b003c9e58402bc635987c686be178a7f5e7ee1b1f1b685c3

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ecce4d317edfedf388f2e8bc8e2643bbe0c44a751e3b3be811a6527129a8b82e
MD5 87e2e46a17f980869f42015f9fdd3780
BLAKE2b-256 1f2ad50fee9020102859b7b82d77851dcf59c3b5860f1620f9368cce7c675b53

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15e5fb501efad361c2a3c1be19dfbf2f90a93d78913ff830c3535334925c929b
MD5 d96d81a2baeed296b8a6e19ef2318d96
BLAKE2b-256 eacf3cba6379e832a8e2c503bb6ae8d9673bdea373f07aa44aa9bcec7efcb868

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55e8498fd6b00bf3a5cf5ec705ada79fc47447f555653d30dc56daa773877771
MD5 1f0dc3214ab6a7165508162d483ae328
BLAKE2b-256 e59bf281395a45b7ce929acfafcd4f0b805e19bd6b211460f129a920c2cf4cd0

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 662d1beeb4158af23a635bd951c574b5d3f38d43c9703b54050c100fb4ac3d82
MD5 cd76c6b6a53cbb6b17e40824dce20eb0
BLAKE2b-256 b6c903e04d763d2290193af95693fd29e339427e90c15b12b360adf0a8aba371

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 556.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 db8bf03888cfe7d3840795c4de6284b1d0038028da34f7a54c1f43b16a759b8c
MD5 e99cf36eb77d9bc174666ab0e902bbeb
BLAKE2b-256 043e99d7c93875b290bdf92aea2353ddc05e8a20e5e443dbc1e9060422c5bc90

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db16a368281e74d6287f70a44228ee2f0ceacbafe0736691699265f5157617e1
MD5 cf4211ac4ec518ab1a7ba2f2c16d3ef0
BLAKE2b-256 7137f8152b248748b5d115f55bc635fe9842e7453da952f7200850c4c4dd7f0e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04fafaaf8fba76acf3fa0c6c1eb4ad66a7d3447dbc6be8fa51483bdd2974a5da
MD5 c9d79c86fbdd58dedd91669677a34786
BLAKE2b-256 3a578c671c2525d510a806fab9886f57800270b43f5c27f47f7fd79b147db7c2

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a62362122a89efbe4e384dcbd5be28ab7ae1cd57e5c1515d3fab55713b81c77b
MD5 85b8e8a4c9ed46cd2881e63c4b56191f
BLAKE2b-256 5925a27d0f2f9781b65b0da8913decf9dcf2711775adbec6fdcc856bb64cc0e9

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e71503542cbc3f91b639724b5eff447a9e776c8a9b51222df01eef9477a8d65
MD5 461262a88bced92c597ab768ec5b7814
BLAKE2b-256 46d9dc23d07f3304f084722c1f8605c396dac4b651354c688b8766bd82ed13f9

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 560.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6d13c7600477fe5619c7049d9420a5e012ece5e37b179c2eb6433b0b4dd03aa
MD5 5c784af705f2b4ec040886f5d22d28f8
BLAKE2b-256 422f3e87d036365268851fc48fb537b12428974e697b38f6c1439801462573e3

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 762039d2fc6b070cab773ab7b5056b36c576ff0e52357ae6e9d0a90300956c67
MD5 79f2a3fd2f4d62089ebbcece0f4ae926
BLAKE2b-256 5b46e668a36782956a1cd73285bef69d975d7543d7d07e9b95ca459b4ae15110

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a4acbffc6ca44e1f9faefdb9b77797eaada16fbcb7d676780e2820e9428d42e
MD5 b099f1038608d4a61b70e902ebd23ee0
BLAKE2b-256 26f70ca9f52397e91f27ba438679a1df626baac2f09e9ce4734a1143b8089dbc

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9fcb4e4826dddf26548db8bc3d81247102544ae314c909f2a074b0fa4c29dc99
MD5 94bea5fd30f24c6222725469e3f4f657
BLAKE2b-256 e888f4dfeb8b5500362977578eb328a5d26e2a86f8c76041bfa9cb7b19561f0d

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 801483a5cb78b680475e5d7acf6f387a5f8d63fabc981a533ae25fa04b80175e
MD5 66635385e72dd4b221fe67e63872ca12
BLAKE2b-256 b486ba6d4b54399c07c2a611ef522a85d3d956cd492eb58564b79793c7b39802

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 561.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f74bbb1c1417fcb7288d189aa53c2114bbb9a7264f1152b6e3fc5643498b5878
MD5 e0bae42677e7bfd473bc2016d0dcf330
BLAKE2b-256 933da8346fb2313e8fbf04e954ef5b66cbf3f938ed98a4098483f769c6d790dc

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aca4df929e2bd047b54fc4503ac3304a5a81e9bb321de781448eca94ae2ba0aa
MD5 8a8912485cc07600aa88168e52d7e6ba
BLAKE2b-256 919e7f721bbcd019776a8cf1874d070969ed4f1c15fd4fa87e9223696a153b47

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03b6178ee57062b687ee2727b88f8679403394b960fcb6cf3b02a158491a7fcd
MD5 3fd15722d8087a3df5ea570255e5e685
BLAKE2b-256 6315d1300b1149d9d5f0bb53c138eca35fbd4b3436ace225f622df638dadf3d5

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71a87a6aba743f561879b3af3d676f004c98323001ec1086630f52bd5a501e14
MD5 3d26fd41105fee98b9462773e0379ae6
BLAKE2b-256 91e8ff52de9e05df7a335ca948f91d319afcfc04cc3ff8df7b3554ff2326fa45

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 74dc4ecb76b649028605919158f315bb84843519975397d7de1088c5ef11eb53
MD5 a804e4df077439a6593d613d5fa63ffc
BLAKE2b-256 34e217c24b8ec0c3d78b21fec9baa178115b600b7ab6e410d85bafeb966658d0

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.8-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 547.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 86df25d45bda18ff30d1495dd0472c55ff9774dddb4609354c5ade8e52e1c053
MD5 a2803e3b655030f803ac2eb567d07c45
BLAKE2b-256 757e71e2339a9f7d530de5842c8ed073514963b1544905d9baf26bc04830ea4d

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f029aa10b4cb5e4ef0726bb53c8acba911bab0bbead3c3a16db6bd0f4ad44e3b
MD5 94dcf282ed32492127ea32299e018499
BLAKE2b-256 196bec464efe9a1827411fc347102a321e63e76790e691c1ec962ba3832f6509

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ef0d2a18e37b7936649fceeb4618fa986a0a720fc08ff5ce7eac7e43d4723f0
MD5 6fff772df81097ecf075478dd0ca80ea
BLAKE2b-256 5ecfcdadae4e0725b413464101651acaadc8687a0b2b145571bbef01aeda92dc

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae3b31817e1879022d97d910c7bcdbb1e89772b43c21ddaffd37d097414930da
MD5 da4abe22e1ef9817544ef6dbd81ed208
BLAKE2b-256 63b498451a5df4a99c1ad8d06051be299786511230d8481dba03169e936d9913

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.8-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 548.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.8-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 574b87e55143ff7c33018b5f54f240689b3ed07436d4d5da0cf015d028a69f55
MD5 9f59241bf47ea0ca3e6b354edced80af
BLAKE2b-256 b350c36140d636f36749b1086542c77ea5771da95d462d839c90d469cd8d6710

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6b35c7e378ee5b03e9bc1e61aea69be4017a88d418d172838cfb51e8eb46367
MD5 118c6062df7a5526585e6632c8d77177
BLAKE2b-256 032d18b60a269aac5fca34aade40c3c9f37435ef342df633f53eefbb5d6aec9f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db788ff5b94efb3b8862fb2124270b8c1c7d99eaa544ff304529637bb1f68ed6
MD5 9ae8e3238a764a1590e77c8eb65a46ee
BLAKE2b-256 2c10efb31be166d586ad1640f71f2bea2a5f82e2e127d039bafc7c0f2f8ad816

See more details on using hashes here.

File details

Details for the file tabmat-3.1.8-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.8-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9e89fcb07c215fc8b3ecf6787afd837c083f481400686dff21f093bbf7ffa10
MD5 fb5b55c7189461aaff29ae07e04c9743
BLAKE2b-256 7faff4ead36507462946b3ef2f71819beb356c18a75847b47d8c624b95dd69d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page