Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-3.1.9.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

tabmat-3.1.9-cp311-cp311-win_amd64.whl (553.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

tabmat-3.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tabmat-3.1.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tabmat-3.1.9-cp311-cp311-macosx_11_0_arm64.whl (611.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tabmat-3.1.9-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tabmat-3.1.9-cp310-cp310-win_amd64.whl (556.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-3.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-3.1.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tabmat-3.1.9-cp310-cp310-macosx_11_0_arm64.whl (621.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tabmat-3.1.9-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-3.1.9-cp39-cp39-win_amd64.whl (560.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-3.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-3.1.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tabmat-3.1.9-cp39-cp39-macosx_11_0_arm64.whl (620.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tabmat-3.1.9-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-3.1.9-cp38-cp38-win_amd64.whl (561.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-3.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-3.1.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tabmat-3.1.9-cp38-cp38-macosx_11_0_arm64.whl (605.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tabmat-3.1.9-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-3.1.9-cp37-cp37m-win_amd64.whl (547.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-3.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-3.1.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tabmat-3.1.9-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-3.1.9-cp36-cp36m-win_amd64.whl (548.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-3.1.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-3.1.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tabmat-3.1.9-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-3.1.9.tar.gz.

File metadata

  • Download URL: tabmat-3.1.9.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.9.tar.gz
Algorithm Hash digest
SHA256 44af3dc837249726057c6cd2f6d484189e06a9d8e4d02b82a51666893e324bfb
MD5 b9065a7257e11a830f397652ff5a2e7a
BLAKE2b-256 e08f6cd0844a45ec45dd50822ae5bb6b87193d72aedd71e9d41565bc504dbaca

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 553.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e804c7b6ffadd1a0701e2d521b8695a3238123b860c2b019016774bf48487f84
MD5 5ebfe9bc52a7c72ff76148e74454ea45
BLAKE2b-256 0638a636acad70f979ad90a34ca5f117c2df088dd60d5cbce558686ee47d55c9

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e05bfb14891d9be023d8e0ebdb86230aa64cfb0960d02a04087431a56a30ccaa
MD5 99a86a0fa97969285d646a78b229abae
BLAKE2b-256 6196cfab11ef24f4bd90a12b9ceff23db391521fe4b5893203f862e7bd25d10b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3411a4ca2f4c70331a5c1e3cac354cdd25eda2d8b2b96f44eb59cb7a371a68c1
MD5 30617f76690b322d2fa41f81479bab48
BLAKE2b-256 d0bafe32aaa307a444c5495ddb5976031f0bc6f3b039031164c129ad87e0063c

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6dd06e4665228df8a448d9b49186fc6adb62092fbd1d519ec45ca0dc93e9e420
MD5 cae75aa52a911f69da51240d9c06a554
BLAKE2b-256 eb1d0fa2505f8d58dfa3e58cad5c1f806a45c2f29e560649eb87c5ba2efe6402

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aaf2323f993a297d9ccb5c93317138bb8d25e54969d2507ec32d63c46398a4c8
MD5 55d3866d8174372b81a3a261d1347e9c
BLAKE2b-256 345937a7617a845ff0b262b4fc8da0f6d47ff981774d5cbdef7b1a8162fc6f62

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 556.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 955e0c842e571355fee23440236d90c5630404443564ba026a33c6b8403cca6e
MD5 d8e83791e30c2c8cc71163ddb261cf16
BLAKE2b-256 56f5c24106d83774b738531133c38a8a51fc0994ff3b2b0f50026593e6aef621

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edc73e9c4af0344662d8268cc90629ddda067d3ab8d0ffb6ce6af59d12ab788f
MD5 a423f24a78393d5de24da21ba32be917
BLAKE2b-256 a86a191666c6b0b8d49a8195d222de00b176bcd72128ac1f3df6c890236aa2c9

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e188991fa09036af613967662a6e5483809079ebf70bb01c507a91ed6df97639
MD5 3533cb712247274a8e967277fc147531
BLAKE2b-256 9ffd1a38ff93a64bb6c6214a93a10ffcb0895178bed2bb203ff709e1a3686c7c

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4216bdf52519a5ecb9a07360871e73efbc065ae30f424830edca57f8284689cd
MD5 ed522b4dcc7db446490a743801d27b29
BLAKE2b-256 055689e0b9fa2e29011231afb0b04b62091368228f695d2c3bf93892106701b1

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3e030003351672655b9b6356a2ed2482a05628135cb86ef00a576567e7daa7b
MD5 88e042beaf803b4f946e8e60b6331b4e
BLAKE2b-256 c1aa6660cc437d5352b1967d8c1f1e7f89aafc80a9abc289524a95f97265970d

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 560.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aaabf37306e9cdda450308bc85fcf346fb3a3d6a51930c23892d90d11abd4a82
MD5 466d812987a7e00e18a382e44b4caccb
BLAKE2b-256 6e6845dbbf6c2af9246d979caa456dfef299e2d796fbc819dcb993c69de38f5e

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a73aec9d4f03f6469fdea2b0fc8bc10afb878499454b9e50c7b68d5b89af5b1e
MD5 b3e465aea1bfa4d05e2e1a31635d2efa
BLAKE2b-256 546132784e1f76c329fa9d2eaa759d1a230734f467fb8988ffed3bae3eee6901

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b24f0030e78764c3403fd19f2f8e0f4465a9f9fbd561b0956a3ec3cdf840d7b
MD5 90addc76c5159dc94c8217229c3f799c
BLAKE2b-256 f612a6289fd0f6522651368d0568552c056e29f2c129f5ad609d4a5bd1f1f1dd

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95a59bfce120f5e43d1bc51318d84d4e82860d295d1d2d23b56230ce6d29cdfc
MD5 9ed1e45362f04eeb5f015e3feb0d9088
BLAKE2b-256 a7f931813765abb6faf75a730579aee92c45d44452148c1fe9184d9bcd19b354

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cbdaea14d6f00066fbadf5ba41ee23410d804a7ba951cc45922cd8a0f43f1926
MD5 89f2c22308d5fdac60f775f78b039069
BLAKE2b-256 879f5dda2e78803e7b4945d9b08bc0b8a9199243c013f143ec78ea3767f580dd

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 561.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5e58869aab9e0577fbfabce5d4a039d8a5458d88479f90a2d4cce3f8ac27ee76
MD5 fd64b4901831542e469d9348b05b852b
BLAKE2b-256 41f1e86d2c5bcdacdc5e1b8ff1f3acee7c243e1ba318bd013297f405197a96d8

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a544aab4f7bb724bf213011e1c83911d49cac4c1883359101a0c47fc0e3c3590
MD5 384b99d123844db689172c5425a72981
BLAKE2b-256 654eb983ab32759a3b0fb6c6dfb283ef4b81fa6588f836b992a5099f0c02bb7b

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 893817b289833e85b0a4be495691be33d749c3d1bb82f4b4da329d6e7d4d4355
MD5 43108210ae8b9b9e0ac72265867f7722
BLAKE2b-256 6cf70ba394d0be73804241e36ce9bee950081c171d04cc2de90db0084d77415f

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b791e67450cb3bc45258094ff77f075e8c1a098e0904fcd590a985f181a0786
MD5 be4ad682c28d5a13cce6eb14ef3ddb9e
BLAKE2b-256 f71e65da3c600ddcf9fd9ee481efa29efdeb540d309e41b1eed021db6223d10a

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20f8c0ee5187d420cb7d7067a504b1486400f9f1f5663d09d95525dfc81617b0
MD5 fce86ca139c5981d0728d534aed1cf99
BLAKE2b-256 e08d78a6cb2ff50ff788225c129336d3dff21274b5068099bc115a99dbc08fec

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 547.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 035eb19dcdf3d01941efe47e15222ca1d8ff7f16da0badce4b5d56c5273a2fd9
MD5 be4a5a1fad5f75b9be178865194324e9
BLAKE2b-256 1ea0582f327d937f4b2b2219d4e01bc9814ba13567c039974a80264088263ed9

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5dff63380a1e88ff60a633d287c50244d788fd8d42133d5c6350b1e5380eb25
MD5 d3f9ad0cc7dce17abcbc0d7e056647ce
BLAKE2b-256 130cfd12642cbff093aad19516fd4afaaf38d6846d04ca91df2337a7983849a5

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88c4ec2b684627310848310cf260abaad919c46b35fe24c80e5e66e1b871a0f0
MD5 c00185ee6c05d8dc3b19be825bfe5fc8
BLAKE2b-256 988aefcaf8110c382655addad2b1c82c3d1a61e6efb3afee09c366b0a4bb88f7

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11fa33b15c4496c5209489cfdf0ab6df2be3561d74c607ff66ee10415468b053
MD5 276832cda08cf2e97dacbcd411cef9cd
BLAKE2b-256 eef4958678b9ff55690665b035132f6b4de864a76b3367f3b7a1d9954f56cbad

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-3.1.9-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 548.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tabmat-3.1.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 26e349f9bff901e04b75b94538f82be9b4d5f89921256bc2f66013c50a8703ad
MD5 812a1d25c3fbf5e19bc65e9b0cbab6e8
BLAKE2b-256 17494d5489b8d05b91d761a5d3982dac9eaf03896222fd1320362ebe4650b772

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e41a604ee42526edaa86793c724e3bf16f7fc9410fe239a876bd4e6c7f1bcb6
MD5 c6b0b35ed3f67172399c91e8d6b0b338
BLAKE2b-256 633085547d00f8e6f33ba21e8d1b6c12573a4dd9fb0153dacf600c299d9bcb72

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79fd03ae358eb76b780d6832898ec2083fe261a35411ef3f58888e2a38d58d1f
MD5 04213e80b3f534120b1b2b744d8c8e75
BLAKE2b-256 6ef431c15688ac8d5dd380abe1741376b5acbf3fee063bded3c810e1e9f39cb7

See more details on using hashes here.

File details

Details for the file tabmat-3.1.9-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-3.1.9-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fedb633e4c6bf9fb7c2872734996c7803883fc920bcf5b98dd0df1dc2192cac7
MD5 78f7ee96616a338e7d03fe8a177d6c2d
BLAKE2b-256 dc11c17ecfe2b81545e87af46b63e28dcae7c8745a382f0807753c670428bbfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page