Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-4.0.0.dev1.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

tabmat-4.0.0.dev1-cp311-cp311-win_amd64.whl (653.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

tabmat-4.0.0.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0.dev1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0.dev1-cp311-cp311-macosx_11_0_arm64.whl (728.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tabmat-4.0.0.dev1-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tabmat-4.0.0.dev1-cp310-cp310-win_amd64.whl (650.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-4.0.0.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0.dev1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0.dev1-cp310-cp310-macosx_11_0_arm64.whl (724.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tabmat-4.0.0.dev1-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-4.0.0.dev1-cp39-cp39-win_amd64.whl (651.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-4.0.0.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0.dev1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0.dev1-cp39-cp39-macosx_11_0_arm64.whl (726.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tabmat-4.0.0.dev1-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-4.0.0.dev1-cp38-cp38-win_amd64.whl (652.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-4.0.0.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0.dev1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0.dev1-cp38-cp38-macosx_11_0_arm64.whl (721.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tabmat-4.0.0.dev1-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-4.0.0.dev1-cp37-cp37m-win_amd64.whl (635.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-4.0.0.dev1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-4.0.0.dev1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tabmat-4.0.0.dev1-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-4.0.0.dev1-cp36-cp36m-win_amd64.whl (631.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-4.0.0.dev1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-4.0.0.dev1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tabmat-4.0.0.dev1-cp36-cp36m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-4.0.0.dev1.tar.gz.

File metadata

  • Download URL: tabmat-4.0.0.dev1.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0.dev1.tar.gz
Algorithm Hash digest
SHA256 951f1870367567fba849bb8f7ad15b529a1cdce5ca00cc507594b5dc469cb5ad
MD5 440d2b280903e5b7087eeb0b76e18639
BLAKE2b-256 b58333a800b089113cc53b61e8073a907fd22c0ebf7060e962f2e25feb271e11

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b0847a39ad77cadf999976c0593d33962b93f717c462212b4276133eba8c4541
MD5 ef0e9e881c171296e7ad7bbe660463a1
BLAKE2b-256 55dc5a8c3437add8bf99fd6b60cb83951b183779bcb1ba07586325845f479061

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31b27019f1f955b9964e51d737511ee8809c6319e9c613a8092f3d4a5e191964
MD5 e1b6ad0005d0604e0fcbd2e4d1abc258
BLAKE2b-256 01283736e7895082a829e6b09560a78d3e4d62a68b54cfaad998987a23f2f50b

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18ebbcb93684b2a535d4de92956d45d4822361e4dcc4fbce7613d64f82ecdd1f
MD5 9f96afdce0d7185404635c0ebb2b103a
BLAKE2b-256 cf4a305744261488d0b7a15ea40ae057b495f12f85cd2d6965ce270a82810e7a

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45e7c4836c2d6c2c24452a1fc62f16e9a05bd335c9df15c80cafac841404fe42
MD5 55799b9661852c62a83a51c0c948be25
BLAKE2b-256 46103fad11144a11dd3d209f02511f4e0b9d3784e98b5bb5bac7f4c345a50503

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b1590dfe76328ce18d56190f7abadbc843c51343c268064d6f9415a3bee2c2d
MD5 371591fc5d857bfa3adc3808b6faae46
BLAKE2b-256 d0e24258d019a5df5c8cb7f980f80db9c8520b65dacde8f10e11f27b8f30add9

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5b01efbb5474c2196e587bffb5f29d1ff93ed733c8915a69239b66f034925975
MD5 a80093e49f263502fd04a344315eda17
BLAKE2b-256 ac065ed3e90de5f7798892def3f8e08506d1587bdb385f0a8c44fb7cfac09604

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aaa708a99a021debdbb54ced76972edeae5c98c9bb0d3bead9de27ca09c7f61e
MD5 d9e2f95c26f763d9637daceb6e9cfed2
BLAKE2b-256 5868fdc075339f43a99570c07c0d906c87e568e84866c2ec5c8a78de0b8e6d85

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b32852bc672bf85c4d015f90d41e937abd20a7162c6d7e8ec428442161ddffb
MD5 5110ed5eefa5248940fc7512f294424c
BLAKE2b-256 0759e5a78c4fe6bd803f357d429ed69b94ea6e4ca19df81264eca4a90ea6e392

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f942c71c6231144f1bde0bd3fdce379c6b2b860715e436700b7e6bb3dcb07550
MD5 0abc3a7c3d4ffff5f39889ada8e0c488
BLAKE2b-256 c2f0c7ea24b536fb528ca41a603c8e18ac2138d841e06bd442db1b75d0904473

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e30800a256d685a2e39bcc8d5fcce100c6a0ab3caca0531895dc99911c0881f
MD5 c46047a0320a359ed1d07ebdb6f186a2
BLAKE2b-256 ca6413bfe90dc5782ec30b6e9b18a1f792a6a42c3306dd0d7ce37d4f1f57cf7b

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d5319f6dd664fd615ecea44b041fd8ec47d0b9ddabb4ef2ea3a822cd0ebc178b
MD5 1ff5198cc8a1d248266d1a80552aefee
BLAKE2b-256 477426503f97d063551a778bc6250f28f41d1c33b93c568178bf02bff025176e

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c541c489777fca47df2c9890460a7bee9f7e5255f0fc097a36081beb6419505
MD5 ef6a87252fdab3a91c9c93625708ed37
BLAKE2b-256 ff11fca1b2b0d8118fe9ff83c49056a3ff84ac7c4a1786b1f3c3d4f2c7574b5f

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b81e561202ce9daa1476c515e91c79c138d347afb2e4756791fb687028099f2
MD5 1259e3daa987fb02e151649f7f95725b
BLAKE2b-256 5e1b0b87579c7d77e7be7f808832d57b73f39a73c6afa6de41113cf2b20a25d0

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 362209213f710b257048f086ee01c6a4a16b64b4a3c9dce3adf079ec467d5563
MD5 8fbd99dc9cce44bc93fd381a1719a66f
BLAKE2b-256 0ea6bd2dd32232bef054260ba9265233ba11e26021ca817074fa88676680923a

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79a45577bf940417fd8e8a703122ccb01f35fd0534cf96bd255b110ed4cca4be
MD5 5cb4149e93ef5d7fb7d57760822d9bc1
BLAKE2b-256 025163a5a2eb97009cd37b0546b1582623926f69e238001ba80460a1bd63c3a4

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6b835153736efec741742aa266f0d26e10218afcd97c1dd4966bacd887882fd8
MD5 fe5dd30924cd3ccacecef9e9f9d67d0b
BLAKE2b-256 c09104e06cee7026c7c5d03369550f5346ea2e9ba1bb6099a0e1cf3ee0bee856

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3777e08ef037ff6485a02ad531741f62051db21963026ccaa1cef7153e3fc66
MD5 01d467c1a9075d050a581659528bdb0e
BLAKE2b-256 9188190ea0a2522ef4ad17d8f5f19c46502c49f9c22e2b0784ae7dbfd994ee54

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31511566a22b0bce228e4241fa3624e38a670a819d97c17059c4e65db284d76d
MD5 9882cce0efd5996c0444037eef5f691e
BLAKE2b-256 12097dd17a3b604c83d8e55c0ee317891ef9792c40ac260c87153fb24494fdb6

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bfe8ae9c9c63b2bbaf7c8f26ce1506acdc8a252a38709763616a58ca10c3000d
MD5 05eda78b561610188d4377d4b91aff79
BLAKE2b-256 ce116257e170f13ce26edf00be47bbfab3867781294c3985098451adbbcefa38

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c99ae4aa76ccb48f2c550c1849b88e8cc585ab28ebed609aacc673f46fc7963c
MD5 5c77804b1c98ef9ebb1aababcca57fc0
BLAKE2b-256 60ec7dc2eccfbffc4c067fd4f211be7d3e62395f81cc50ef1c5cd8ff764975b8

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9be27db2e25137d88ba6d6f77f6f9e8c4734a27bb5a5cf9e6de9b5d269f9b07b
MD5 48098b0aedbc1f0c8203ed52e4f588d0
BLAKE2b-256 6afac939da3dacc775eea1c3077e7875b80ac140bc9fa1fb04e1ea9faeb2c9b2

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2fad6441b881b9257e6bb508e562046536a7cdbbd2fc3e5b09334519fafe873
MD5 c4e720015fc9ee99a79e3fa99eeb7460
BLAKE2b-256 a9e973a6be60d46755bdd0a9c3e3f5793e4b2d4d94293150c58d2300248dec83

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f44873658df60fc666bba59ae701513fec07c219ede04a78ca90fa3e8d4f8c9
MD5 1fb23792dfbe3a48cefdfc2a74e030f9
BLAKE2b-256 4e17796c8c4084c5467ada3b15353890dd03d076c0719c943bfdb133f3b10f65

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87c8c6603f3ea253789beff0d210ab0f1beebd7dfdd50cc5a5cae07d2eeb1801
MD5 2583b75648d8d36844fba0f98e280f73
BLAKE2b-256 08c6afddf8ff264458bfe736116e6b9d3f0cd5e3a288316349494366d98460f5

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 35ba50fc5a34f3db850bf4749ef41371218a08118ade519ef35561fbbdfde132
MD5 0e5b80069048296d9c94607b2323bf1d
BLAKE2b-256 5cd8fa130c13eede04ee2acab020828d00c7a9117ecf8cb583bb1e957bd4f408

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db89cc11d0f22149b68860ea2a987c153ec3597e30610b971be4d03dfda3db09
MD5 a94b647c0abbaf681e85fab5449ae037
BLAKE2b-256 77f819ba3dfab920a696a8e7d438413d3cfe8e57f880bc00481d1449cbdeb890

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2aa32e36805e4f9096dfb833a770d4784889d634c01bfd356153d214e3d2adf6
MD5 5e43351683a81d7e180e22406769905d
BLAKE2b-256 b8cb9e9bbe0200e8e863a37f39729e69e1ce88bafcf591be6002413a0b5605a9

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0.dev1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0.dev1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8885e5ccd4a25f357a19b05ece001635653eb6b8cdb1edb44baf8abad1c9bc1
MD5 683c6ae3ee65dad3d6fe66ae63d9d96f
BLAKE2b-256 5a250db9a9af96d385f4f5e16c5d225b631dcab021adf7a94142066e862627b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page