Skip to main content

Efficient matrix representations for working with tabular data.

Project description

Efficient matrix representations for working with tabular data

CI

Installation

Simply install via conda-forge!

conda install -c conda-forge tabmat

Use case

TL;DR: We provide matrix classes for efficiently building statistical algorithms with data that is partially dense, partially sparse and partially categorical.

Data used in economics, actuarial science, and many other fields is often tabular, containing rows and columns. Further common properties are also common:

  • It often is very sparse.
  • It often contains a mix of dense and sparse columns.
  • It often contains categorical data, processed into many columns of indicator values created by "one-hot encoding."

High-performance statistical applications often require fast computation of certain operations, such as

  • Computing sandwich products of the data, transpose(X) @ diag(d) @ X. A sandwich product shows up in the solution to weighted least squares, as well as in the Hessian of the likelihood in generalized linear models such as Poisson regression.
  • Matrix-vector products, possibly on only a subset of the rows or columns. For example, when limiting computation to an "active set" in a L1-penalized coordinate descent implementation, we may only need to compute a matrix-vector product on a small subset of the columns.
  • Computing all operations on standardized predictors which have mean zero and standard deviation one. This helps with numerical stability and optimizer efficiency in a wide range of machine learning algorithms.

This library and its design

We designed this library with the above use cases in mind. We built this library first for estimating generalized linear models, but expect it will be useful in a variety of econometric and statistical use cases. This library was borne out of our need for speed, and its unified API is motivated by the desire to work with a unified matrix API internal to our statistical algorithms.

Design principles:

  • Speed and memory efficiency are paramount.
  • You don't need to sacrifice functionality by using this library: DenseMatrix and SparseMatrix subclass np.ndarray and scipy.sparse.csc_matrix respectively, and inherit behavior from those classes wherever it is not improved on.
  • As much as possible, syntax follows NumPy syntax, and dimension-reducing operations (like sum) return NumPy arrays, following NumPy dimensions about the dimensions of results. The aim is to make these classes as close as possible to being drop-in replacements for numpy.ndarray. This is not always possible, however, due to the differing APIs of numpy.ndarray and scipy.sparse.
  • Other operations, such as toarray, mimic Scipy sparse syntax.
  • All matrix classes support matrix-vector products, sandwich products, and getcol.

Individual subclasses may support significantly more operations.

Matrix types

  • DenseMatrix represents dense matrices, subclassing numpy nparray. It additionally supports methods getcol, toarray, sandwich, standardize, and unstandardize.
  • SparseMatrix represents column-major sparse data, subclassing scipy.sparse.csc_matrix. It additionally supports methods sandwich and standardize.
  • CategoricalMatrix represents one-hot encoded categorical matrices. Because all the non-zeros in these matrices are ones and because each row has only one non-zero, the data can be represented and multiplied much more efficiently than a generic sparse matrix.
  • SplitMatrix represents matrices with both dense, sparse and categorical parts, allowing for a significant speedup in matrix multiplications.
  • StandardizedMatrix efficiently and sparsely represents a matrix that has had its column normalized to have mean zero and variance one. Even if the underlying matrix is sparse, such a normalized matrix will be dense. However, by storing the scaling and shifting factors separately, StandardizedMatrix retains the original matrix sparsity.

Wide data set

Benchmarks

See here for detailed benchmarking.

API documentation

See here for detailed API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabmat-4.0.0a0.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

tabmat-4.0.0a0-cp311-cp311-win_amd64.whl (653.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

tabmat-4.0.0a0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0a0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0a0-cp311-cp311-macosx_11_0_arm64.whl (728.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tabmat-4.0.0a0-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tabmat-4.0.0a0-cp310-cp310-win_amd64.whl (650.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tabmat-4.0.0a0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0a0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0a0-cp310-cp310-macosx_11_0_arm64.whl (724.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tabmat-4.0.0a0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tabmat-4.0.0a0-cp39-cp39-win_amd64.whl (651.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

tabmat-4.0.0a0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0a0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0a0-cp39-cp39-macosx_11_0_arm64.whl (726.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tabmat-4.0.0a0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tabmat-4.0.0a0-cp38-cp38-win_amd64.whl (652.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

tabmat-4.0.0a0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tabmat-4.0.0a0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tabmat-4.0.0a0-cp38-cp38-macosx_11_0_arm64.whl (721.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tabmat-4.0.0a0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tabmat-4.0.0a0-cp37-cp37m-win_amd64.whl (635.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tabmat-4.0.0a0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tabmat-4.0.0a0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tabmat-4.0.0a0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tabmat-4.0.0a0-cp36-cp36m-win_amd64.whl (631.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

tabmat-4.0.0a0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tabmat-4.0.0a0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tabmat-4.0.0a0-cp36-cp36m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tabmat-4.0.0a0.tar.gz.

File metadata

  • Download URL: tabmat-4.0.0a0.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0a0.tar.gz
Algorithm Hash digest
SHA256 b013134227106bb9f494c7f1fb193c7ebc221b6454781d1c8677e8c4148c4faa
MD5 a38638c6bc23665a97b55fe1bc117d57
BLAKE2b-256 4a955b76a57a35376cb289773dd9e1075119b9a679b82840cf8e12fcd6f5592e

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tabmat-4.0.0a0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 653.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0a0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 36e51dff4412c0f33bd6ad3277726b0b03bdef974eb4796b62a7c50a8bde2283
MD5 b426a0d00ea1cdf9d135ae246516e3f4
BLAKE2b-256 f41a8da54466b68b71b24c7ac7c488a0317d6d373263518dce5c33b93a6bf638

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34e4d9a6c3cacdee50d628dc4aa49389f9c93a7bbd7d64f8aaf58b7862b00805
MD5 81208e75a024e3dfdbb6d44e0ac7ee89
BLAKE2b-256 4348781092265ed2f31158b5dc605ad57a4bcca83b108a00429f09b364b872b6

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fc675796054e2ae97c1e4b6b40d151ff8a2e8bf2b7285427a80f96c214bcbb6
MD5 3c8d4795e21f6c08907b79e2e3a743a4
BLAKE2b-256 3fb848920781a8b07c3db2c8cff78e63f93d766ee8e7d87277a5dedd8de394df

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d181d5f648f37d0aeb2d1daa54754e28eb4ab56c2b1a60061170874e63019aef
MD5 7cf1ba1e1b39f0340773b1caf8402d4e
BLAKE2b-256 69bdb8587466a780b408c1f6542942e3263d2241031b2abed55e78bc674fa57f

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de7e40a83c25a1b681c3b98e84d25e04e53bfe19eb38b2328c84262ab10f04fc
MD5 d7344fd6ad04c290738bcaa8dfa3e42b
BLAKE2b-256 df40e5011d66ab9d2cabcf390c0f446d85a1b9a7d74a5fc6bc102350abedf8f8

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tabmat-4.0.0a0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 650.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0a0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f732b482b0983fcd033e2033c1d8b22ae699d58ed7fd95bd56a634181567dd8d
MD5 b6ffeac2758d3699cd6ca33dd07704a8
BLAKE2b-256 a7ba9090621531afd9a62671a81403d4439ca1b4a91a4fcb2e2cff46bd48e998

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cb465ccab740cde481966e3b39eac5da2a9ea6165ffe0139aabd8850c1ec1e7
MD5 85528f6aabc4aa4792051aa31aed244b
BLAKE2b-256 617d3aee5773ec1bf486c32fe71b069347727e6eeaad6b0171c449f7ccbb6d44

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57501137d38de40f544306708a7aab887f227586b83f267b458ef584d8a228a5
MD5 81d1489d362cbe537ffca8086ced2ef2
BLAKE2b-256 534ec294e5bed4caad9707a3eb3c76a0f8b3f906edf280309ea8916e95409e52

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f3d3fbd77f6b50aea52f12e9ba15a576e12152267ee9b6db54e40ea40f04e60
MD5 7b4e1765ef7636dc0213916fd074e520
BLAKE2b-256 9825f56ce19dab98318e8ecbc14d958b208586cd6f74bdc3c13dfbe7b4612f81

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f689ae7c2588f0b636e1efc42e9824d6d8e54313d633a42706e1419d67d2d5c
MD5 46514dc3c33a6cecf17515c1ebfe0b4c
BLAKE2b-256 243a28068faa1d6cfa867c8278432e1d38bf7941e00cb486799312797775c1bd

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tabmat-4.0.0a0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 651.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0a0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8ba252e82374318b87261b92276261ba16eea84a16deea9e7d8f9a960aa58080
MD5 9d2e937ff7e5e422f47b60ac0d2b5da7
BLAKE2b-256 0f83341efb90b6fb9f3f6d288099aa17c452f93a6e25ed5a4a1411d778d4f299

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 181924272a6318c43f5e4205bfe9102aa151b0a9f3e16dc6657ddc509bdc0d0d
MD5 bf4299d9cb0467ced62954b1010494e2
BLAKE2b-256 253f61f10d603d53b379a817e43a22e91a8c6040d3077ad7fc751acaa9e47a7d

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5fed466029bed3de1f7566b21b9a69adb3b86d5113215f85c80a05b46a91310e
MD5 e53e2f119613d1ebc682b16dbe07a38c
BLAKE2b-256 b62aa5c2d436b91bf2fb68b18e07303b2b093aa6b3a0b357b19f862c2e5913c5

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69cd8f582b602995b73afb6f276dc3d3d0f7c52749ad1cacac0fd2304982df8e
MD5 f3c542b59ed7e0ada5674eeb284c7444
BLAKE2b-256 0bf22ad9772ff71135edf43e3166887389d822d193a72655e9c657395efef3fe

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68b4815630e85c9b4127fecbe5026b4ba6dbdebba2108900086963be0ee9bf41
MD5 65ad49310092135dc1e054f6ed6e650d
BLAKE2b-256 eb8b9c4f26e5956f2515ee1f6072246a3c6029a9d721d4114b2cf8dccc65671c

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tabmat-4.0.0a0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 652.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0a0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b816066e647e1574cebe1d651b94ca58e09400d47db861a2c04936bd99daa7cf
MD5 979fe9d87b5d01e5d2b1d367901ce2d9
BLAKE2b-256 c3e97075d54a6597fa3b3303ba394baa0c6b8cf21cf7112ef6c17a79bcb508c7

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6da9f2560adc707d0b4d2f11e3b6c6de5a43ef2d75dce1eac0babc1599a3a566
MD5 9489a22a1257216b8ba915f268421a4d
BLAKE2b-256 55ab3948c6f89366b626533087c68b9013f0ee2749a5b2869e1a237f2023624a

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d2560c123e17927b77ab532a41cce2b8ad928934adc5f0fb3343f146182b1e7
MD5 3bb1e7fb1135425a61611857a14e44dd
BLAKE2b-256 b8e01aafa6b90700fa5cc966ea9a64994d91d3c77b19212598d725302f299a12

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb64171ab44b970a7efb91ece188d3f75858c94cc0029141c5fca59f72732759
MD5 5616994c58ce9b72d3efe9d8d8d5b740
BLAKE2b-256 c4503a3dcd438a15d741a6f9530f67d2f742dbff7cc7eebb5e2a1a9ee78b1dea

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 419971d988ed882d77a6c1350e9219a86ce3c4530b5695c8b2c5d7fecfeafd95
MD5 b39bab73d3a7c25cb3808d18d0476afa
BLAKE2b-256 34d02202e62842546e0b6c4f25130d4cce1090ac9f6ea6bae4a5bdb794fe1508

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tabmat-4.0.0a0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 635.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0a0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9245294b198c513490f6a678860b9e9f8816ed19e9d2bb358e1a4f4ae90a9065
MD5 e92b710e92d299675ce8fd0bbfbce02a
BLAKE2b-256 acedd472df4f5adbd5c352a8afcee726bbb49b97713c1b5ea72b4892ab057452

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33f52fb5f7d6676ce8d8f6c72dde62aec78343b24af7c6aef4e3ef53b4b37329
MD5 328bf68a7530fe36d0825f536e4ae6f4
BLAKE2b-256 5b9395b0086931735c3fb0ad38a60cb8f9e8b85a76672ed95a40fdca938490a2

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5baf61ff1c2cf49aaa9eaa8b3504890146ddcdd093e31d0ced4d8896d7edc21e
MD5 d171bba948b24276c9d634ab5e5a4cb4
BLAKE2b-256 27d871f38474a22f1763eeea6fd9e317af852f6b21adfc461f44056750a2f496

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 649b405d31a48d812b3483907f8cd396854876b0c5dae489fb2770086f944da3
MD5 eee676fbaebbc1d2452523647f8decfb
BLAKE2b-256 5aaa7812a6627339a6a575f0d86dbb03c69cd0b9a92cc554019f0471310454a3

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tabmat-4.0.0a0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 631.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tabmat-4.0.0a0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 422dbd854b94d939aa482ad74340306e8118d0feb82187cfd9df40ddaaafb2a7
MD5 0eaf186c6165f059deb147d295fd9024
BLAKE2b-256 8898cc337cae58606f01ccdad48f7e192577fbe791c0bae0e768bd4b2d6d43cf

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d403ad420b400fe4cefa629638ad7fee1dc03e1920b37c853bba7f4a9856f178
MD5 dd1bbc92161b0118ea0234f8989ea896
BLAKE2b-256 6690ef4feba24e25bcea9cbe4ebc8c28ce77f60fe75d504260888778a471cd88

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9d3f9bab12193a100ab6d2c938eb4ef40f3577406cf515d50d6e75673f83feb
MD5 a7ea51425f10f7c0823c7f923d2baa19
BLAKE2b-256 588c825b16ee3d6e895001d7fff63d9baba0d2031ab1fab53c5a50391f483236

See more details on using hashes here.

File details

Details for the file tabmat-4.0.0a0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tabmat-4.0.0a0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c4ba42c93f619dae7bc8f08cde531a9b951372d6a50d009a7b258e03f1565143
MD5 8afae26793f74341464cc66452693199
BLAKE2b-256 96cb4dee6101e3827243e8223a55df87527f43819f3e188ec99486bce088a400

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page