No project description provided
Project description
TabulaRDF
TabulaRDF - Functionality for DataFrame to RDF conversions.
Although TabulaRDF was primarily designed for table to RDF conversions, the TemplateConverter
class should be general enough to allow conversions to basically any target format.
Just like the TemplateGraphConverter
class parses renderings into an rdflib.Graph
instance, renderings could e.g. also get parsed into an lxml.etree
.
Requirements
- python >= 3.11
Usage
TabulaRDF provides two main approaches for table conversions, a template-based approach using the Jinja2 templating engine and a pure Python/callable-based approach.
Also a CLI for template conversions is available, see TaCL below.
Template converters
Template converters are based on the generic TemplateConverter
class which allows to iterate over a dataframe and pass table data to Jinja renderings.
Two different render strategies are available through the render
method and the render_by_row
method respectively.
- With the
render
method, every template gets passed the entire table data as "table_data"; this means that iteration must be done in the template. - With the
render_by_row
method, for every row iteration the template gets passed the current row data (as "row_data") only; so iteration is done at the Python level, not in the template.
The TemplateGraphConverter
class uses the render_by_row
method and parses renderings into an rdflib.Graph
instance.
import pandas as pd
from jinja2 import Template
from tabulardf import TemplateGraphConverter
table = [
{
"id": "rem",
"full_title": "Reference corpus Middle High German"
},
{
"id": "SweDracor",
"full_title": "Swedish Drama Corpus"
}
]
dataframe = pd.DataFrame(data=table)
template = Template(
"""
@prefix crm: <http://www.cidoc-crm.org/cidoc-crm/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
{% set acronym_lower = row_data['id'] | lower %}
<https://{{acronym_lower}}.clscor.io/entity/appellation/1> a crm:E41_Appellation ;
crm:P2_has_type <https://core.clscor.io/entity/type/appellation_type/full_title> ;
rdf:value "{{row_data['full_title']}}" .
"""
)
converter = TemplateGraphConverter(
dataframe=dataframe,
template=template
)
print(converter.serialize())
Output:
@prefix crm: <http://www.cidoc-crm.org/cidoc-crm/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
<https://rem.clscor.io/entity/appellation/1> a crm:E41_Appellation ;
crm:P2_has_type <https://core.clscor.io/entity/type/appellation_type/full_title> ;
rdf:value "Reference corpus Middle High German" .
<https://swedracor.clscor.io/entity/appellation/1> a crm:E41_Appellation ;
crm:P2_has_type <https://core.clscor.io/entity/type/appellation_type/full_title> ;
rdf:value "Swedish Drama Corpus" .
This is not a simple text rendering (note that the prefix declarations are not repeated) but an rdflib
serialization!
TemplateGraphConverter.serialize
is a proxy for rdflib.Graph.serialze
, so any serialization format can be generated.
Callable converters
TabulaRDF provides two main approaches for pure Python/callable based table to RDF conversions, the RowGraphConverter
class and FieldGraphConverter
class.
RowGraphConverter
takes a dataframe and a Python callable which takes a dict parameter and is responsible for returning a graph instance;
for every row iteration over the dataframe this callable gets passed the row data as a dictionary; the generated subgraphs ("row graphs") are merged into a main graph.
import pandas as pd
from jinja2 import Template
from tabulardf import RowGraphConverter
from rdflib import Graph, URIRef, Literal, Namespace
from rdflib.namespace import RDF
table = [
{
"id": "rem",
"full_title": "Reference corpus Middle High German"
},
{
"id": "SweDracor",
"full_title": "Swedish Drama Corpus"
}
]
dataframe = pd.DataFrame(data=table)
def row_rule(row_data: dict) -> Graph:
crm = Namespace("http://www.cidoc-crm.org/cidoc-crm/")
subject_uri = URIRef(f"https://{row_data['id'].lower()}.clscor.io/entity/appellation/1")
triples = [
(
subject_uri,
RDF.type,
crm["E41_Appellation"]
),
(
subject_uri,
crm["P2_has_type"],
URIRef("https://core.clscor.io/entity/type/appellation_type/full_title")
),
(
subject_uri,
RDF.value,
Literal(row_data["full_title"])
)
]
graph = Graph()
for triple in triples:
graph.add(triple)
return graph
converter = RowGraphConverter(
dataframe=dataframe,
row_rule=row_rule)
print(converter.serialize())
FieldGraphConverter
on the other hand iterates over every field for every row in a dataframe; it applies callables to every field according to a mapping of column header names and callables responsible for returning a subgraph per field ("field graphs") which are then merged into a main graph.
Callables in such are rule mapping are of arity 3, they receive
subject_field
(according to theFieldGraphConverter
'ssubject_column
parameter),object_field
(i.e. the value of the current field) andstore
(a class level dictionary for caching data).
import pandas as pd
from jinja2 import Template
from tabulardf import FieldGraphConverter
from rdflib import Graph, URIRef, Literal, Namespace
from rdflib.namespace import RDF
table = [
{
"id": "rem",
"full_title": "Reference corpus Middle High German"
},
{
"id": "SweDracor",
"full_title": "Swedish Drama Corpus"
}
]
dataframe = pd.DataFrame(data=table)
def id_rule(subject_field, object_field, store) -> Graph:
subject_uri = URIRef(f"https://{subject_field}.clscor.io/entity/appellation/1")
crm = Namespace("http://www.cidoc-crm.org/cidoc-crm/")
triples = [
(
subject_uri,
RDF.type,
crm["E41_Appellation"]
),
(
subject_uri,
crm["P2_has_type"],
URIRef("https://core.clscor.io/entity/type/appellation_type/full_title")
)
]
graph = Graph()
for triple in triples:
graph.add(triple)
return graph
def full_title_rule(subject_field, object_field, store) -> Graph:
subject_uri = URIRef(f"https://{subject_field}.clscor.io/entity/appellation/1")
graph = Graph()
graph.add((subject_uri, RDF.value, Literal(object_field)))
return graph
column_rules = {
"id": id_rule,
"full_title": full_title_rule
}
converter = FieldGraphConverter(
dataframe=dataframe,
subject_column="id",
subject_rule=str.lower,
column_rules=column_rules)
print(converter.serialize())
If subject_rule
is supplied, subject_field
in a column_rule
callable will be what subject_rule
computes it to be.
As mentioned, store
is a class level attribute for sharing state between callables.
Both RowgraphConverter and FieldGraphConverter produce the same output.
TaCL
TaCL is a humble CLI for tabulaRDF template conversions. [todo: description + examples]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tabulardf-0.1.1.tar.gz
.
File metadata
- Download URL: tabulardf-0.1.1.tar.gz
- Upload date:
- Size: 25.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.11.3 Linux/6.4.11-arch2-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8b54fa5e3ab39a9d9f013b5d635c364d82348465cac11358b1a91545b2485974 |
|
MD5 | 1daf38d0a85595989a4a70987ae0abb4 |
|
BLAKE2b-256 | 02afdf0937fd3215ee166c3fac7d244a300b9de7e857fe3fe0a99365de078843 |
File details
Details for the file tabulardf-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: tabulardf-0.1.1-py3-none-any.whl
- Upload date:
- Size: 27.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.11.3 Linux/6.4.11-arch2-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 741bf2f5252aa3fceb44c0cabb7f21e3cbefdf0166d43552bfd3be342487e5f5 |
|
MD5 | adbced1ad30dd12e539b88a5e31c45f4 |
|
BLAKE2b-256 | c545050d423034d241cedc53e79fefbafae8433eea283c9986a2313ca4bc973b |