Skip to main content

Converts tabular data like Pandas dataframe to GitHub Flavored Markdown table (wrapper around tabulate module).

Project description

Tabulate Helper

Converts tabular data like Pandas dataframe to GitHub Flavored Markdown pipe table (wrapper around tabulate module). I use it with Pandoctools/Knitty.



Via conda:

conda install -c defaults -c conda-forge tabulatehelper

Via pip:

pip install tabulatehelper

Differences from tabulate module

  • With defaults: auto-headers for Pandas data frames,
  • With defaults: auto-empty headers for GitHub compatibility,
  • Special function that prints header only (useful at the end of long tables),
  • Doesn't show index by default,
  • formats argument can be set that selectively overrides automatic align format.


import numpy as np
import pandas as pd
from tabulate import tabulate
import tabulatehelper as th

df = pd.DataFrame(np.random.random(16).reshape(4, 4), columns=('a', 'b', 'c', 'd'))

# tabulate wtithout wrapper:
tbl = tabulate(df, df.columns, tablefmt='pipe', showindex=False)

# tabulate helper with overriding align format:
tbl = th.md_table(df, formats={-1: 'c'})



|        a |        b |        c |        d |
| 0.413284 | 0.932373 | 0.277797 | 0.646333 |
| 0.552731 | 0.381826 | 0.141727 | 0.2483   |
| 0.779889 | 0.012458 | 0.308352 | 0.650859 |
| 0.301109 | 0.982111 | 0.994024 | 0.43551  |

Usage example

Main functions are tabulatehelper.md_table(...) and tabulatehelper.md_header(...). Usage example that works both in Atom+Hydrogen and in Pandoctools+Knitty:

from IPython.display import Markdown
import pandas as pd
import numpy as np
import tabulatehelper as th

df = pd.DataFrame(np.random.random(16).reshape(4, 4))

# appended header is useful when very long table
# (can display `df.iloc[[0]]` in hydrogen)


: Table {{#tbl:table1}}



Converting to other formats

Tabulate can convert to other formats but I prefer using pypandoc on th.md_table output as it can convert to any Pandoc supported output format.



def md_table(tabular_data: Union[pd.DataFrame, object],
             headers: tuple = None,
             showindex: Union[bool, None] = False,
             formats: Union[dict, str, Iterable[str]] = None,
             return_headers_only: bool = False,
             **kwargs) -> str:
    Converts tabular data like Pandas dataframe to
    GitHub Flavored Markdown pipe table.

    Markdown table ``formats`` examples:

    * ``dict(foo='-:', bar=':-:', **{-1: 'c'})``,
    * ``'--|-:|:-:'`` or ``'|--|-:|:-:|'`` or ``-rc``,
    * ``['--', '-:', 'C']``

    tabular_data :
        tabulate.tabulate(tabular_data[,...]) argument
    headers :
        tabulate.tabulate(..., headers[,...]) optional argument.
        If None and tabular_data is pd.DataFrame then default is
        tabular_data.columns converted to Tuple[str, ...].
        If None then use tabulate.tabulate(...) default
        (but in this particular case if it's absent in the output
        then add blank header).
    showindex :
        tabulate.tabulate(..., showindex[,...]) optional argument.
    formats :
        GitHub Flavored Markdown table align formats: dict, str or list / iterable.
        '-' mean lack of align format, 'l'/'L'/':-' mean left align,
        'r'/'R'/'-:' mean right align, 'c'/'C'/':-:' mean center align.
        dict keys are for tabulate output headers so they should be str.
        int keys mean column number.
    return_headers_only :
        returns only table header + empty row.
        If header is absent then returns empty string.
    kwargs :
        Other tabulate.tabulate(...) optional keyword arguments

    md :
        Markdown table

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tabulatehelper, version 0.0.6
Filename, size File type Python version Upload date Hashes
Filename, size tabulatehelper-0.0.6.tar.gz (21.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page