Skip to main content

TOML yet Another Configuration System

Project description

TACS

str method is not supported yet.

Introduction

TACS was created as a lightweight library to define and manage system configurations, such as those commonly found in software designed for scientific experimentation. These "configurations" typically cover concepts like hyperparameters used in training a machine learning model or configurable model hyperparameters, such as the depth of a convolutional neural network. Since you're doing science, reproducibility is paramount and thus you need a reliable way to serialize experimental configurations. TACS uses TOML as a simple, human readable serialization format. The paradigm is: your code + a TACS config for experiment E (+ external dependencies + hardware + other nuisance terms ...) = reproducible experiment E. While you might not be able to control everything, at least you can control your code and your experimental configuration. YACS is here to help you with that.

TACS grew out of the experimental configuration systems used in: py-faster-rcnn and Detectron.

Usage

TACS can be used in a variety of flexible ways. There are two main paradigms:

  • Configuration as local variable
  • Configuration as a global singleton

It's up to you which you prefer to use, though the local variable route is recommended.

To use TACS in your project, you first create a project config file, typically called config.py or defaults.py. This file is the one-stop reference point for all configurable options. It should be very well documented and provide sensible defaults for all options.

# my_project/config.py
from tacs.config import CfgNode as CN


_C = CN()

_C.SYSTEM = CN()
# Number of GPUS to use in the experiment
_C.SYSTEM.NUM_GPUS = 8
# Number of workers for doing things
_C.SYSTEM.NUM_WORKERS = 4

_C.TRAIN = CN()
# A very important hyperparameter
_C.TRAIN.HYPERPARAMETER_1 = 0.1
# The all important scales for the stuff
_C.TRAIN.SCALES = (2, 4, 8, 16)


def get_cfg_defaults():
  """Get a yacs CfgNode object with default values for my_project."""
  # Return a clone so that the defaults will not be altered
  # This is for the "local variable" use pattern
  return _C.clone()

# Alternatively, provide a way to import the defaults as
# a global singleton:
# cfg = _C  # users can `from config import cfg`

Next, you'll create TOML configuration files; typically you'll make one for each experiment. Each configuration file only overrides the options that are changing in that experiment.

# my_project/experiment.toml
[SYSTEM]
  NUM_GPUS = 2
[TRAIN]
  SCALES = [1, 2]

Finally, you'll have your actual project code that uses the config system. After any initial setup it's a good idea to freeze it to prevent further modification by calling the freeze() method. As illustrated below, the config options can either be used a global set of options by importing cfg and accessing it directly, or the cfg can be copied and passed as an argument.

# my_project/main.py

import my_project
from config import get_cfg_defaults  # local variable usage pattern, or:
# from config import cfg  # global singleton usage pattern


if __name__ == "__main__":
  cfg = get_cfg_defaults()
  cfg.merge_from_file("experiment.toml")
  cfg.freeze()
  print(cfg)

  # Example of using the cfg as global access to options
  if cfg.SYSTEM.NUM_GPUS > 0:
    my_project.setup_multi_gpu_support()

  model = my_project.create_model(cfg)

Command line overrides

You can update a CfgNode using a list of fully-qualified key, value pairs. This makes it easy to consume override options from the command line. For example:

cfg.merge_from_file("experiment.toml")
# Now override from a list (opts could come from the command line)
opts = ["SYSTEM.NUM_GPUS", 8, "TRAIN.SCALES", "[1, 2, 3, 4]"]
cfg.merge_from_list(opts)

The following principle is recommended: "There is only one way to configure the same thing." This principle means that if an option is defined in a TACS config object, then your program should set that configuration option using cfg.merge_from_list(opts) and not by defining, for example, --train-scales as a command line argument that is then used to set cfg.TRAIN.SCALES.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tacs-0.0.1-py3.6.egg (20.7 kB view details)

Uploaded Source

tacs-0.0.1-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file tacs-0.0.1-py3.6.egg.

File metadata

  • Download URL: tacs-0.0.1-py3.6.egg
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.8.0 tqdm/4.36.1 CPython/3.6.7

File hashes

Hashes for tacs-0.0.1-py3.6.egg
Algorithm Hash digest
SHA256 f930a300836530f9e8497fbeebda677366a651c1e9ec8e911224d97c036af392
MD5 efba63ec82bc6d91f78e58b6f92ab460
BLAKE2b-256 8fc3fad2ca6018ec256dcef346021ebabcdbb5685daf003654bddc14b6c7ef7f

See more details on using hashes here.

File details

Details for the file tacs-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: tacs-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 16.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.8.0 tqdm/4.36.1 CPython/3.6.7

File hashes

Hashes for tacs-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7d0c786eec5ee8e7dc5939eadbb6f531c041a879d69432326012a65283ca198d
MD5 9c3059d97170f0ed051ae5def2588284
BLAKE2b-256 a0edd0c55f71226311770019c186b4ae724816d910316eaf3d1abe918a3cc00e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page