Skip to main content

Transformer-Attentional Copulas for Multivariate Time Series

Project description

TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series

Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Nicolas Chapados, Alexandre Drouin (2023). TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series. (Preprint)

We introduce a new model for multivariate probabilistic time series prediction, designed to flexibly address a range of tasks including forecasting, interpolation, and their combinations. Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS), wherein the number of distributional parameters now scales linearly with the number of variables instead of factorially. The new objective requires the introduction of a training curriculum, which goes hand-in-hand with necessary changes to the original architecture. We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks, while maintaining the flexibility of prior work, such as seamless handling of unaligned and unevenly-sampled time series.

[Preprint]


Installation

You can install the TACTiS-2 model with pip:

pip install tactis

Alternatively, the research version installs gluonts and pytorchts as dependencies which are required to replicate experiments from the paper:

pip install tactis[research]

Note: tactis has been currently tested with Python 3.10.8.

Instructions

With the research version of the code, train.py can be used to train the TACTiS-2 model for a specific dataset. The arguments in train.py can be used to specify the dataset, the training task (forecasting or interpolation), the hyperparameters of the model and a whole range of other training options.

There are notebooks in the that are useful in guiding training and evaluation pipeline setups: random_walk.ipynb demonstrates TACTiS-2 on a simple low-dimensional random walk dataset, and gluon_fred_md_forecasting.ipynb demonstrates how to train and evaluate TACTiS-2 on the FRED-MD dataset used in the paper. Note that the gluon_fred_md_forecasting.ipynb notebook requires GluonTS and PyTorchTS to be installed.

Note

For an implementation of the original version of TACTiS, please see here.

Citing this work

Please use the following Bibtex entry to cite TACTiS-2.

@misc{ashok2023tactis2,
      title={TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series}, 
      author={Arjun Ashok and Étienne Marcotte and Valentina Zantedeschi and Nicolas Chapados and Alexandre Drouin},
      year={2023},
      eprint={2310.01327},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tactis-0.1.3.tar.gz (47.9 kB view details)

Uploaded Source

Built Distribution

tactis-0.1.3-py3-none-any.whl (56.5 kB view details)

Uploaded Python 3

File details

Details for the file tactis-0.1.3.tar.gz.

File metadata

  • Download URL: tactis-0.1.3.tar.gz
  • Upload date:
  • Size: 47.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for tactis-0.1.3.tar.gz
Algorithm Hash digest
SHA256 a622506c8413912ae5f57b7e10583776775de44f09814f27821b849ec9a324cd
MD5 be3e67929d345a77ff7db6889549e2f6
BLAKE2b-256 bf77f54b507131890741af41fdd91e230a63efacda76c07b3e1ff045e11f8ad5

See more details on using hashes here.

File details

Details for the file tactis-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: tactis-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 56.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for tactis-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7545746eaa816ceae700ce52feb0042b230c46240665dc4100365359fbaff047
MD5 1349eb56d4682a85975e5cf186ee026c
BLAKE2b-256 69f34474a90988421ba0b04cde4492d94bed255aff82effbe009e849a4e65d8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page