Skip to main content

Torch autodiff DFT-D3 implementation

Project description

Release Apache-2.0 Tests Ubuntu Tests macOS (x86) Tests macOS (ARM) Tests Windows Documentation Status Coverage pre-commit.ci status

Implementation of the DFT-D3 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D3 dispersion model see

  • J. Chem. Phys., 2010, 132, 154104 (DOI)

  • J. Comput. Chem., 2011, 32, 1456 (DOI)

For alternative implementations also check out

simple-dftd3:

Simple reimplementation of the DFT-D3 dispersion model in Fortran with Python bindings

torch-dftd:

PyTorch implementation of DFT-D2 and DFT-D3

dispax:

Implementation of the DFT-D3 dispersion model in Jax M.D.

Installation

pip

PyPI

The project can easily be installed with pip.

pip install tad-dftd3

conda

Conda Version

tad-dftd3 is also available from conda.

conda install tad-dftd3

From source

This project is hosted on GitHub at dftd3/tad-dftd3. Obtain the source by cloning the repository with

git clone https://github.com/dftd3/tad-dftd3
cd tad-dftd3

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yml
mamba activate torch

Install this project with pip in the environment

pip install .

The following dependencies are required

Development

For development, additionally install the following tools in your environment.

mamba install black covdefaults mypy pre-commit pylint pytest pytest-cov pytest-xdist tox
pip install pytest-random-order

With pip, add the option -e for installing in development mode, and add [dev] for the development dependencies

pip install -e .[dev]

The pre-commit hooks are initialized by running the following command in the root of the repository.

pre-commit install

For testing all Python environments, simply run tox.

tox

Note that this randomizes the order of tests but skips “large” tests. To modify this behavior, tox has to skip the optional posargs.

tox -- test

Example

The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.

import torch
import tad_dftd3 as d3
import tad_mctc as mctc

numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)
param = {
    "a1": torch.tensor(0.49484001),
    "s8": torch.tensor(0.78981345),
    "a2": torch.tensor(5.73083694),
}

energy = d3.dftd3(numbers, positions, param)

torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0004075971, -0.0003940886, -0.0003817684, -0.0003949536,
#         -0.0003577212, -0.0004110279, -0.0005385976, -0.0001808242,
#         -0.0001563670, -0.0001503394, -0.0001577045, -0.0001764488])

The next example shows the calculation of dispersion energies for a batch of structures, while retaining access to all intermediates used for calculating the dispersion energy.

import torch
import tad_dftd3 as d3
import tad_mctc as mctc

sample1 = dict(
    numbers=mctc.convert.symbol_to_number("Pb H H H H Bi H H H".split()),
    positions=torch.tensor(
        [
            [-0.00000020988889, -4.98043478877778, +0.00000000000000],
            [+3.06964045311111, -6.06324400177778, +0.00000000000000],
            [-1.53482054188889, -6.06324400177778, -2.65838526500000],
            [-1.53482054188889, -6.06324400177778, +2.65838526500000],
            [-0.00000020988889, -1.72196703577778, +0.00000000000000],
            [-0.00000020988889, +4.77334244722222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, -2.35039772300000],
            [-2.71400388988889, +6.70626379422222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, +2.35039772300000],
        ]
    ),
)
sample2 = dict(
    numbers=mctc.convert.symbol_to_number(
        "C C C C C C I H H H H H S H C H H H".split(" ")
    ),
    positions=torch.tensor(
        [
            [-1.42754169820131, -1.50508961850828, -1.93430551124333],
            [+1.19860572924150, -1.66299114873979, -2.03189643761298],
            [+2.65876001301880, +0.37736955363609, -1.23426391650599],
            [+1.50963368042358, +2.57230374419743, -0.34128058818180],
            [-1.12092277855371, +2.71045691257517, -0.25246348639234],
            [-2.60071517756218, +0.67879949508239, -1.04550707592673],
            [-2.86169588073340, +5.99660765711210, +1.08394899986031],
            [+2.09930989272956, -3.36144811062374, -2.72237695164263],
            [+2.64405246349916, +4.15317840474646, +0.27856972788526],
            [+4.69864865613751, +0.26922271535391, -1.30274048619151],
            [-4.63786461351839, +0.79856258572808, -0.96906659938432],
            [-2.57447518692275, -3.08132039046931, -2.54875517521577],
            [-5.88211879210329, 11.88491819358157, +2.31866455902233],
            [-8.18022701418703, 10.95619984550779, +1.83940856333092],
            [-5.08172874482867, 12.66714386256482, -0.92419491629867],
            [-3.18311711399702, 13.44626574330220, -0.86977613647871],
            [-5.07177399637298, 10.99164969235585, -2.10739192258756],
            [-6.35955320518616, 14.08073002965080, -1.68204314084441],
        ]
    ),
)
numbers = mctc.batch.pack(
    (
        sample1["numbers"],
        sample2["numbers"],
    )
)
positions = mctc.batch.pack(
    (
        sample1["positions"],
        sample2["positions"],
    )
)
ref = d3.reference.Reference()
rcov = d3.data.COV_D3[numbers]
rvdw = d3.data.VDW_D3[numbers.unsqueeze(-1), numbers.unsqueeze(-2)]
r4r2 = d3.data.R4R2[numbers]
param = {
    "a1": torch.tensor(0.49484001),
    "s8": torch.tensor(0.78981345),
    "a2": torch.tensor(5.73083694),
}

cn = mctc.ncoord.cn_d3(
    numbers, positions, counting_function=mctc.ncoord.exp_count, rcov=rcov
)
weights = d3.model.weight_references(numbers, cn, ref, d3.model.gaussian_weight)
c6 = d3.model.atomic_c6(numbers, weights, ref)
energy = d3.disp.dispersion(
    numbers,
    positions,
    param,
    c6,
    rvdw,
    r4r2,
    d3.disp.rational_damping,
)

torch.set_printoptions(precision=10)
print(torch.sum(energy, dim=-1))
# tensor([-0.0014092578, -0.0057840119])

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “as is” basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_dftd3-0.4.0.tar.gz (746.5 kB view details)

Uploaded Source

Built Distribution

tad_dftd3-0.4.0-py3-none-any.whl (756.8 kB view details)

Uploaded Python 3

File details

Details for the file tad_dftd3-0.4.0.tar.gz.

File metadata

  • Download URL: tad_dftd3-0.4.0.tar.gz
  • Upload date:
  • Size: 746.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for tad_dftd3-0.4.0.tar.gz
Algorithm Hash digest
SHA256 7d353a0ba4c8762a4e9a2e8f0a842f5507147c5960d97fa59e5c261c28076342
MD5 fe88199c4c5b6644bef97a6ff6ae2bc4
BLAKE2b-256 b6e6a210e2b3eac254af4bc23047d98b57252ff4e256049ba3e03b934efc5a09

See more details on using hashes here.

File details

Details for the file tad_dftd3-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: tad_dftd3-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 756.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for tad_dftd3-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4e88fdd8735adeb1170dec767432518fa91ddac3f7515736740625ea8a9b3860
MD5 e2747e611d690006ce8519ad150e8ee3
BLAKE2b-256 aa0b6b8bd0e2d0993a5d55235de0282c35b84b706f943866a1752b40c8e838e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page