Skip to main content

No project description provided

Project description

Apache-2.0 CI Documentation Status Coverage

Implementation of the DFT-D3 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D3 dispersion model see

  • J. Chem. Phys., 2010, 132, 154104 (DOI)

  • J. Comput. Chem., 2011, 32, 1456 (DOI)

For alternative implementations also check out

simple-dftd3:

Simple reimplementation of the DFT-D3 dispersion model in Fortran with Python bindings

torch-dftd:

PyTorch implementation of DFT-D2 and DFT-D3

Installation

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yml
mamba activate torch

Install this project with pip in the environment

pip install .

Add the option -e for installing in development mode.

The following dependencies are required

You can check your installation by running the test suite with

pytest tests/ --pyargs tad_dftd3 --doctest-modules

Example

The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.

import torch
import tad_dftd3 as d3

numbers = d3.util.to_number(symbols="C C C C N C S H H H H H".split())
positions = torch.Tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)
param = dict(a1=0.49484001, s8=0.78981345, a2=5.73083694)

energy = d3.dftd3(numbers, positions, param)

torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0004075971, -0.0003940886, -0.0003817684, -0.0003949536,
#         -0.0003577212, -0.0004110279, -0.0005385976, -0.0001808242,
#         -0.0001563670, -0.0001503394, -0.0001577045, -0.0001764488])

The next example shows the calculation of dispersion energies for a batch of structures, while retaining access to all intermediates used for calculating the dispersion energy.

import torch
import tad_dftd3 as d3

sample1 = dict(
    numbers=d3.util.to_number("Pb H H H H Bi H H H".split()),
    positions=torch.tensor(
        [
            [-0.00000020988889, -4.98043478877778, +0.00000000000000],
            [+3.06964045311111, -6.06324400177778, +0.00000000000000],
            [-1.53482054188889, -6.06324400177778, -2.65838526500000],
            [-1.53482054188889, -6.06324400177778, +2.65838526500000],
            [-0.00000020988889, -1.72196703577778, +0.00000000000000],
            [-0.00000020988889, +4.77334244722222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, -2.35039772300000],
            [-2.71400388988889, +6.70626379422222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, +2.35039772300000],
        ]
    ),
)
sample2 = dict(
    numbers=d3.util.to_number("C C C C C C I H H H H H S H C H H H".split(" ")),
    positions=torch.tensor(
        [
            [-1.42754169820131, -1.50508961850828, -1.93430551124333],
            [+1.19860572924150, -1.66299114873979, -2.03189643761298],
            [+2.65876001301880, +0.37736955363609, -1.23426391650599],
            [+1.50963368042358, +2.57230374419743, -0.34128058818180],
            [-1.12092277855371, +2.71045691257517, -0.25246348639234],
            [-2.60071517756218, +0.67879949508239, -1.04550707592673],
            [-2.86169588073340, +5.99660765711210, +1.08394899986031],
            [+2.09930989272956, -3.36144811062374, -2.72237695164263],
            [+2.64405246349916, +4.15317840474646, +0.27856972788526],
            [+4.69864865613751, +0.26922271535391, -1.30274048619151],
            [-4.63786461351839, +0.79856258572808, -0.96906659938432],
            [-2.57447518692275, -3.08132039046931, -2.54875517521577],
            [-5.88211879210329, 11.88491819358157, +2.31866455902233],
            [-8.18022701418703, 10.95619984550779, +1.83940856333092],
            [-5.08172874482867, 12.66714386256482, -0.92419491629867],
            [-3.18311711399702, 13.44626574330220, -0.86977613647871],
            [-5.07177399637298, 10.99164969235585, -2.10739192258756],
            [-6.35955320518616, 14.08073002965080, -1.68204314084441],
        ]
    ),
)
numbers = d3.util.pack(
    (
        sample1["numbers"],
        sample2["numbers"],
    )
)
positions = d3.util.pack(
    (
        sample1["positions"],
        sample2["positions"],
    )
)
ref = d3.reference.Reference()
rcov = d3.data.covalent_rad_d3[numbers]
rvdw = d3.data.vdw_rad_d3[numbers.unsqueeze(-1), numbers.unsqueeze(-2)]
r4r2 = d3.data.sqrt_z_r4_over_r2[numbers]
param = dict(a1=0.49484001, s8=0.78981345, a2=5.73083694)

cn = d3.ncoord.coordination_number(numbers, positions, rcov, d3.ncoord.exp_count)
weights = d3.model.weight_references(numbers, cn, ref, d3.model.gaussian_weight)
c6 = d3.model.atomic_c6(numbers, weights, ref)
energy = d3.disp.dispersion(
    numbers, positions, c6, rvdw, r4r2, d3.disp.rational_damping, **param
)

torch.set_printoptions(precision=10)
print(torch.sum(energy, dim=-1))
# tensor([-0.0014092578, -0.0057840119])

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “as is” basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad-dftd3-0.0.1.tar.gz (226.7 kB view details)

Uploaded Source

Built Distribution

tad_dftd3-0.0.1-py3-none-any.whl (229.4 kB view details)

Uploaded Python 3

File details

Details for the file tad-dftd3-0.0.1.tar.gz.

File metadata

  • Download URL: tad-dftd3-0.0.1.tar.gz
  • Upload date:
  • Size: 226.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 CPython/3.8.12

File hashes

Hashes for tad-dftd3-0.0.1.tar.gz
Algorithm Hash digest
SHA256 c2ac1837f818c8226e34fe1c5c409937f3f16b834677346b63cc81ef011a2f97
MD5 47eaa6a54d4757aa2cabd943b8053800
BLAKE2b-256 1e05227ae6c10b17a2553c6d84c55263011c8542cd3ed04eaf9fa737d3751d8f

See more details on using hashes here.

File details

Details for the file tad_dftd3-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: tad_dftd3-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 229.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 CPython/3.8.12

File hashes

Hashes for tad_dftd3-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 da069e364ae535566220fd8dacd3f0ce7f975b025e8bd7f52b4d41d42d28bdf4
MD5 daf03b1240afd35b731a2d5f6d9669d0
BLAKE2b-256 79896df2cc4356a85f9f048bc2cd110504d1be3e98f1632379cd88801588b1e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page