Skip to main content

Torch autodiff DFT-D3 implementation

Project description

Release PyPI Apache-2.0 CI Documentation Status Coverage pre-commit.ci status

Implementation of the DFT-D3 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D3 dispersion model see

  • J. Chem. Phys., 2010, 132, 154104 (DOI)

  • J. Comput. Chem., 2011, 32, 1456 (DOI)

For alternative implementations also check out

simple-dftd3:

Simple reimplementation of the DFT-D3 dispersion model in Fortran with Python bindings

torch-dftd:

PyTorch implementation of DFT-D2 and DFT-D3

dispax:

Implementation of the DFT-D3 dispersion model in Jax M.D.

Installation

pip

The project can easily be installed with pip.

pip install tad-dftd3

From source

This project is hosted on GitHub at dftd3/tad-dftd3. Obtain the source by cloning the repository with

git clone https://github.com/dftd3/tad-dftd3
cd tad-dftd3

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yml
mamba activate torch

For development, install the following additional dependencies

mamba install black coverage covdefaults mypy pre-commit pylint pytest tox

Install this project with pip in the environment

pip install .

Add the option -e for installing in development mode.

The following dependencies are required

You can check your installation by running the test suite with pytest

pytest tests/ --pyargs tad_dftd3

or tox for testing multiple Python versions

tox

Example

The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.

import torch
import tad_dftd3 as d3

numbers = d3.util.to_number(symbols="C C C C N C S H H H H H".split())
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)
param = {
    "a1": torch.tensor(0.49484001),
    "s8": torch.tensor(0.78981345),
    "a2": torch.tensor(5.73083694),
}

energy = d3.dftd3(numbers, positions, param)

torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0004075971, -0.0003940886, -0.0003817684, -0.0003949536,
#         -0.0003577212, -0.0004110279, -0.0005385976, -0.0001808242,
#         -0.0001563670, -0.0001503394, -0.0001577045, -0.0001764488])

The next example shows the calculation of dispersion energies for a batch of structures, while retaining access to all intermediates used for calculating the dispersion energy.

import torch
import tad_dftd3 as d3

sample1 = dict(
    numbers=d3.util.to_number("Pb H H H H Bi H H H".split()),
    positions=torch.tensor(
        [
            [-0.00000020988889, -4.98043478877778, +0.00000000000000],
            [+3.06964045311111, -6.06324400177778, +0.00000000000000],
            [-1.53482054188889, -6.06324400177778, -2.65838526500000],
            [-1.53482054188889, -6.06324400177778, +2.65838526500000],
            [-0.00000020988889, -1.72196703577778, +0.00000000000000],
            [-0.00000020988889, +4.77334244722222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, -2.35039772300000],
            [-2.71400388988889, +6.70626379422222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, +2.35039772300000],
        ]
    ),
)
sample2 = dict(
    numbers=d3.util.to_number("C C C C C C I H H H H H S H C H H H".split(" ")),
    positions=torch.tensor(
        [
            [-1.42754169820131, -1.50508961850828, -1.93430551124333],
            [+1.19860572924150, -1.66299114873979, -2.03189643761298],
            [+2.65876001301880, +0.37736955363609, -1.23426391650599],
            [+1.50963368042358, +2.57230374419743, -0.34128058818180],
            [-1.12092277855371, +2.71045691257517, -0.25246348639234],
            [-2.60071517756218, +0.67879949508239, -1.04550707592673],
            [-2.86169588073340, +5.99660765711210, +1.08394899986031],
            [+2.09930989272956, -3.36144811062374, -2.72237695164263],
            [+2.64405246349916, +4.15317840474646, +0.27856972788526],
            [+4.69864865613751, +0.26922271535391, -1.30274048619151],
            [-4.63786461351839, +0.79856258572808, -0.96906659938432],
            [-2.57447518692275, -3.08132039046931, -2.54875517521577],
            [-5.88211879210329, 11.88491819358157, +2.31866455902233],
            [-8.18022701418703, 10.95619984550779, +1.83940856333092],
            [-5.08172874482867, 12.66714386256482, -0.92419491629867],
            [-3.18311711399702, 13.44626574330220, -0.86977613647871],
            [-5.07177399637298, 10.99164969235585, -2.10739192258756],
            [-6.35955320518616, 14.08073002965080, -1.68204314084441],
        ]
    ),
)
numbers = d3.util.pack(
    (
        sample1["numbers"],
        sample2["numbers"],
    )
)
positions = d3.util.pack(
    (
        sample1["positions"],
        sample2["positions"],
    )
)
ref = d3.reference.Reference()
rcov = d3.data.covalent_rad_d3[numbers]
rvdw = d3.data.vdw_rad_d3[numbers.unsqueeze(-1), numbers.unsqueeze(-2)]
r4r2 = d3.data.sqrt_z_r4_over_r2[numbers]
param = {
    "a1": torch.tensor(0.49484001),
    "s8": torch.tensor(0.78981345),
    "a2": torch.tensor(5.73083694),
}

cn = d3.ncoord.coordination_number(numbers, positions, rcov, d3.ncoord.exp_count)
weights = d3.model.weight_references(numbers, cn, ref, d3.model.gaussian_weight)
c6 = d3.model.atomic_c6(numbers, weights, ref)
energy = d3.disp.dispersion(
    numbers, positions, c6, rvdw, r4r2, d3.disp.rational_damping, **param
)

torch.set_printoptions(precision=10)
print(torch.sum(energy, dim=-1))
# tensor([-0.0014092578, -0.0057840119])

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “as is” basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_dftd3-0.1.2.tar.gz (236.1 kB view details)

Uploaded Source

Built Distribution

tad_dftd3-0.1.2-py3-none-any.whl (238.8 kB view details)

Uploaded Python 3

File details

Details for the file tad_dftd3-0.1.2.tar.gz.

File metadata

  • Download URL: tad_dftd3-0.1.2.tar.gz
  • Upload date:
  • Size: 236.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for tad_dftd3-0.1.2.tar.gz
Algorithm Hash digest
SHA256 e9f7d4eb4d91aba2523833ae9c681fb1274c51a6a9f024f1514b924ae9aaede6
MD5 5be1f8fb5cd728d165b5df32d84d8fb8
BLAKE2b-256 1cca56f4f6ab7c036f9e4945701d6b80eb4af5ab8d056af8aaba2e914a48a8c3

See more details on using hashes here.

File details

Details for the file tad_dftd3-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: tad_dftd3-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 238.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for tad_dftd3-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 886430e1e5c66ea039e9aa4466c23161ed5d53a0df939fed5d88a88a813b517b
MD5 36125171619d6716b76802c82ec22b82
BLAKE2b-256 e3e41a6ec6e06ea716b08b3451b5821097297d1b1c8a7e7e578183d809a0c8f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page