Torch autodiff DFT-D3 implementation
Project description
Implementation of the DFT-D3 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.
For details on the D3 dispersion model see
For alternative implementations also check out
- simple-dftd3:
Simple reimplementation of the DFT-D3 dispersion model in Fortran with Python bindings
- torch-dftd:
PyTorch implementation of DFT-D2 and DFT-D3
- dispax:
Implementation of the DFT-D3 dispersion model in Jax M.D.
Installation
pip
The project can easily be installed with pip.
pip install tad-dftd3
From source
This project is hosted on GitHub at dftd3/tad-dftd3. Obtain the source by cloning the repository with
git clone https://github.com/dftd3/tad-dftd3
cd tad-dftd3
We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.
mamba env create -n torch -f environment.yml
mamba activate torch
Install this project with pip in the environment
pip install .
The following dependencies are required
Development
For development, additionally install the following tools in your environment.
mamba install black covdefaults mypy pre-commit pylint pytest pytest-cov pytest-xdist tox
pip install pytest-random-order
With pip, add the option -e for installing in development mode, and add [dev] for the development dependencies
pip install -e .[dev]
The pre-commit hooks are initialized by running the following command in the root of the repository.
pre-commit install
For testing all Python environments, simply run tox.
tox
Note that this randomizes the order of tests but skips “large” tests. To modify this behavior, tox has to skip the optional posargs.
tox -- test
Example
The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.
import torch
import tad_dftd3 as d3
import tad_mctc as mctc
numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())
positions = torch.tensor(
[
[-2.56745685564671, -0.02509985979910, 0.00000000000000],
[-1.39177582455797, +2.27696188880014, 0.00000000000000],
[+1.27784995624894, +2.45107479759386, 0.00000000000000],
[+2.62801937615793, +0.25927727028120, 0.00000000000000],
[+1.41097033661123, -1.99890996077412, 0.00000000000000],
[-1.17186102298849, -2.34220576284180, 0.00000000000000],
[-2.39505990368378, -5.22635838332362, 0.00000000000000],
[+2.41961980455457, -3.62158019253045, 0.00000000000000],
[-2.51744374846065, +3.98181713686746, 0.00000000000000],
[+2.24269048384775, +4.24389473203647, 0.00000000000000],
[+4.66488984573956, +0.17907568006409, 0.00000000000000],
[-4.60044244782237, -0.17794734637413, 0.00000000000000],
]
)
param = {
"a1": torch.tensor(0.49484001),
"s8": torch.tensor(0.78981345),
"a2": torch.tensor(5.73083694),
}
energy = d3.dftd3(numbers, positions, param)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0004075971, -0.0003940886, -0.0003817684, -0.0003949536,
# -0.0003577212, -0.0004110279, -0.0005385976, -0.0001808242,
# -0.0001563670, -0.0001503394, -0.0001577045, -0.0001764488])
The next example shows the calculation of dispersion energies for a batch of structures, while retaining access to all intermediates used for calculating the dispersion energy.
import torch
import tad_dftd3 as d3
import tad_mctc as mctc
sample1 = dict(
numbers=mctc.convert.symbol_to_number("Pb H H H H Bi H H H".split()),
positions=torch.tensor(
[
[-0.00000020988889, -4.98043478877778, +0.00000000000000],
[+3.06964045311111, -6.06324400177778, +0.00000000000000],
[-1.53482054188889, -6.06324400177778, -2.65838526500000],
[-1.53482054188889, -6.06324400177778, +2.65838526500000],
[-0.00000020988889, -1.72196703577778, +0.00000000000000],
[-0.00000020988889, +4.77334244722222, +0.00000000000000],
[+1.35700257511111, +6.70626379422222, -2.35039772300000],
[-2.71400388988889, +6.70626379422222, +0.00000000000000],
[+1.35700257511111, +6.70626379422222, +2.35039772300000],
]
),
)
sample2 = dict(
numbers=mctc.convert.symbol_to_number(
"C C C C C C I H H H H H S H C H H H".split(" ")
),
positions=torch.tensor(
[
[-1.42754169820131, -1.50508961850828, -1.93430551124333],
[+1.19860572924150, -1.66299114873979, -2.03189643761298],
[+2.65876001301880, +0.37736955363609, -1.23426391650599],
[+1.50963368042358, +2.57230374419743, -0.34128058818180],
[-1.12092277855371, +2.71045691257517, -0.25246348639234],
[-2.60071517756218, +0.67879949508239, -1.04550707592673],
[-2.86169588073340, +5.99660765711210, +1.08394899986031],
[+2.09930989272956, -3.36144811062374, -2.72237695164263],
[+2.64405246349916, +4.15317840474646, +0.27856972788526],
[+4.69864865613751, +0.26922271535391, -1.30274048619151],
[-4.63786461351839, +0.79856258572808, -0.96906659938432],
[-2.57447518692275, -3.08132039046931, -2.54875517521577],
[-5.88211879210329, 11.88491819358157, +2.31866455902233],
[-8.18022701418703, 10.95619984550779, +1.83940856333092],
[-5.08172874482867, 12.66714386256482, -0.92419491629867],
[-3.18311711399702, 13.44626574330220, -0.86977613647871],
[-5.07177399637298, 10.99164969235585, -2.10739192258756],
[-6.35955320518616, 14.08073002965080, -1.68204314084441],
]
),
)
numbers = mctc.batch.pack(
(
sample1["numbers"],
sample2["numbers"],
)
)
positions = mctc.batch.pack(
(
sample1["positions"],
sample2["positions"],
)
)
ref = d3.reference.Reference()
rcov = d3.data.COV_D3[numbers]
rvdw = d3.data.VDW_D3[numbers.unsqueeze(-1), numbers.unsqueeze(-2)]
r4r2 = d3.data.R4R2[numbers]
param = {
"a1": torch.tensor(0.49484001),
"s8": torch.tensor(0.78981345),
"a2": torch.tensor(5.73083694),
}
cn = mctc.ncoord.cn_d3(
numbers, positions, counting_function=mctc.ncoord.exp_count, rcov=rcov
)
weights = d3.model.weight_references(numbers, cn, ref, d3.model.gaussian_weight)
c6 = d3.model.atomic_c6(numbers, weights, ref)
energy = d3.disp.dispersion(
numbers,
positions,
param,
c6,
rvdw,
r4r2,
d3.disp.rational_damping,
)
torch.set_printoptions(precision=10)
print(torch.sum(energy, dim=-1))
# tensor([-0.0014092578, -0.0057840119])
Contributing
This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.
License
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “as is” basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tad_dftd3-0.2.0.tar.gz
.
File metadata
- Download URL: tad_dftd3-0.2.0.tar.gz
- Upload date:
- Size: 742.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9afe6d4a468fee6f9f113c50f32eba14dd285fc04df05488ddd7239add62f8ec |
|
MD5 | b3dc4d9d6108de836a0a8aa8253e3154 |
|
BLAKE2b-256 | 3e7f79f08a23e2cac68af78f8c972a2853c9fc3f441332aded470448248bfa32 |
File details
Details for the file tad_dftd3-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: tad_dftd3-0.2.0-py3-none-any.whl
- Upload date:
- Size: 1.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9cf8b6109430d1fbff351bd58c3008468618cb23ea107910edc1f8ee3bd1f052 |
|
MD5 | 64eec3e3326c3c895265a87a51cc7434 |
|
BLAKE2b-256 | bcfcc184dc79f93204b0a7f6adcaf6d19e8078c4bd3a0e6f3e508b7ff374955e |