Torch autodiff DFT-D4 implementation
Project description
Implementation of the DFT-D4 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.
For details on the D4 dispersion model, see
E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215
E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222
E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys., 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A
For alternative implementations, also check out
- dftd4:
Implementation of the DFT-D4 dispersion model in Fortran with Python bindings.
- cpp-d4:
Implementation of the DFT-D4 dispersion model in C++.
Installation
pip
tad-dftd4 can easily be installed with pip.
pip install tad-dftd4
From source
This project is hosted on GitHub at dftd4/tad-dftd4. Obtain the source by cloning the repository with
git clone https://github.com/dftd4/tad-dftd4
cd tad-dftd4
We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.
mamba env create -n torch -f environment.yaml
mamba activate torch
Development
For development, additionally install the following tools in your environment.
mamba install black covdefaults coverage mypy pre-commit pylint tox
With pip, add the option -e and the development dependencies for installing in development mode.
pip install -e .[dev]
The pre-commit hooks are initialized by running the following command in the root of the repository.
pre-commit install
For testing all Python environments, simply run tox.
tox
Note that this randomizes the order of tests but skips “large” tests. To modify this behavior, tox has to skip the optional _posargs_.
tox -- test
Examples
The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.
import torch
import tad_dftd4 as d4
numbers = d4.utils.to_number(symbols="C C C C N C S H H H H H".split())
# coordinates in Bohr
positions = torch.tensor(
[
[-2.56745685564671, -0.02509985979910, 0.00000000000000],
[-1.39177582455797, +2.27696188880014, 0.00000000000000],
[+1.27784995624894, +2.45107479759386, 0.00000000000000],
[+2.62801937615793, +0.25927727028120, 0.00000000000000],
[+1.41097033661123, -1.99890996077412, 0.00000000000000],
[-1.17186102298849, -2.34220576284180, 0.00000000000000],
[-2.39505990368378, -5.22635838332362, 0.00000000000000],
[+2.41961980455457, -3.62158019253045, 0.00000000000000],
[-2.51744374846065, +3.98181713686746, 0.00000000000000],
[+2.24269048384775, +4.24389473203647, 0.00000000000000],
[+4.66488984573956, +0.17907568006409, 0.00000000000000],
[-4.60044244782237, -0.17794734637413, 0.00000000000000],
]
)
# total charge of the system
charge = torch.tensor(0.0)
# TPSS0-D4-ATM parameters
param = {
"s6": positions.new_tensor(1.0),
"s8": positions.new_tensor(1.85897750),
"s9": positions.new_tensor(1.0),
"a1": positions.new_tensor(0.44286966),
"a2": positions.new_tensor(4.60230534),
}
energy = d4.dftd4(numbers, positions, charge, param)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0020841344, -0.0018971195, -0.0018107513, -0.0018305695,
# -0.0021737693, -0.0019484236, -0.0022788253, -0.0004080658,
# -0.0004261866, -0.0004199839, -0.0004280768, -0.0005108935])
The next example shows the calculation of dispersion energies for a batch of structures.
import torch
import tad_dftd4 as d4
# S22 system 4: formamide dimer
numbers = d4.utils.pack((
d4.utils.to_number("C C N N H H H H H H O O".split()),
d4.utils.to_number("C O N H H H".split()),
))
# coordinates in Bohr
positions = d4.utils.pack((
torch.tensor([
[-3.81469488143921, +0.09993441402912, 0.00000000000000],
[+3.81469488143921, -0.09993441402912, 0.00000000000000],
[-2.66030049324036, -2.15898251533508, 0.00000000000000],
[+2.66030049324036, +2.15898251533508, 0.00000000000000],
[-0.73178529739380, -2.28237795829773, 0.00000000000000],
[-5.89039325714111, -0.02589114569128, 0.00000000000000],
[-3.71254944801331, -3.73605775833130, 0.00000000000000],
[+3.71254944801331, +3.73605775833130, 0.00000000000000],
[+0.73178529739380, +2.28237795829773, 0.00000000000000],
[+5.89039325714111, +0.02589114569128, 0.00000000000000],
[-2.74426102638245, +2.16115570068359, 0.00000000000000],
[+2.74426102638245, -2.16115570068359, 0.00000000000000],
]),
torch.tensor([
[-0.55569743203406, +1.09030425468557, 0.00000000000000],
[+0.51473634678469, +3.15152550263611, 0.00000000000000],
[+0.59869690244446, -1.16861263789477, 0.00000000000000],
[-0.45355203669134, -2.74568780438064, 0.00000000000000],
[+2.52721209544999, -1.29200800956867, 0.00000000000000],
[-2.63139587595376, +0.96447869452240, 0.00000000000000],
]),
))
# total charge of both system
charge = torch.tensor([0.0, 0.0])
# TPSS0-D4-ATM parameters
param = {
"s6": positions.new_tensor(1.0),
"s8": positions.new_tensor(1.85897750),
"s9": positions.new_tensor(1.0),
"a1": positions.new_tensor(0.44286966),
"a2": positions.new_tensor(4.60230534),
}
# calculate dispersion energy in Hartree
energy = torch.sum(d4.dftd4(numbers, positions, charge, param), -1)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0088341432, -0.0027013607])
print(energy[0] - 2*energy[1])
# tensor(-0.0034314217)
Contributing
This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.
License
This project is free software: you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This project is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the Lesser GNU General Public License for more details.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Lesser GNU General Public license, shall be licensed as above, without any additional terms or conditions.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tad_dftd4-0.0.3.tar.gz
.
File metadata
- Download URL: tad_dftd4-0.0.3.tar.gz
- Upload date:
- Size: 153.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc85e46f4bdcd37b4fd8b68858a865f7da6cca627d0ab5b219594ff3cbb9e825 |
|
MD5 | bc237fe317bea12aa8650814176e0277 |
|
BLAKE2b-256 | ddc17869e3ad301c32adc90ed100fd20a417f91c7eb8cef08f5b59f861e2e866 |
File details
Details for the file tad_dftd4-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: tad_dftd4-0.0.3-py3-none-any.whl
- Upload date:
- Size: 106.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce19aefc93829a6647d1493021f8df5745cd9dd2d6ac7c5c0c127603e4cf129d |
|
MD5 | cc87f1da9789843c0fc3717789d53244 |
|
BLAKE2b-256 | e624ce4aaecbfc5e61e9ff1e2fa15357fe333af924ad34f17a17886595942dae |