Skip to main content

Torch autodiff DFT-D4 implementation

Project description

Python Versions Release PyPI LGPL-3.0 CI Documentation Status Coverage pre-commit.ci status

Implementation of the DFT-D4 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D4 dispersion model, see

  • E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215

  • E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222

  • E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys., 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A

For alternative implementations, also check out

dftd4:

Implementation of the DFT-D4 dispersion model in Fortran with Python bindings.

cpp-d4:

Implementation of the DFT-D4 dispersion model in C++.

Installation

pip

tad-dftd4 can easily be installed with pip.

pip install tad-dftd4

From source

This project is hosted on GitHub at dftd4/tad-dftd4. Obtain the source by cloning the repository with

git clone https://github.com/dftd4/tad-dftd4
cd tad-dftd4

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yaml
mamba activate torch

Development

For development, additionally install the following tools in your environment.

mamba install black covdefaults coverage mypy pre-commit pylint tox

With pip, add the option -e and the development dependencies for installing in development mode.

pip install -e .[dev]

The pre-commit hooks are initialized by running the following command in the root of the repository.

pre-commit install

For testing all Python environments, simply run tox.

tox

Note that this randomizes the order of tests but skips “large” tests. To modify this behavior, tox has to skip the optional _posargs_.

tox -- test

Examples

The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.

import torch
import tad_dftd4 as d4

numbers = d4.utils.to_number(symbols="C C C C N C S H H H H H".split())

# coordinates in Bohr
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)

# total charge of the system
charge = torch.tensor(0.0)

# TPSS0-D4-ATM parameters
param = {
    "s6": positions.new_tensor(1.0),
    "s8": positions.new_tensor(1.85897750),
    "s9": positions.new_tensor(1.0),
    "a1": positions.new_tensor(0.44286966),
    "a2": positions.new_tensor(4.60230534),
}

energy = d4.dftd4(numbers, positions, charge, param)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0020841344, -0.0018971195, -0.0018107513, -0.0018305695,
#         -0.0021737693, -0.0019484236, -0.0022788253, -0.0004080658,
#         -0.0004261866, -0.0004199839, -0.0004280768, -0.0005108935])

The next example shows the calculation of dispersion energies for a batch of structures.

import torch
import tad_dftd4 as d4

# S22 system 4: formamide dimer
numbers = d4.utils.pack((
    d4.utils.to_number("C C N N H H H H H H O O".split()),
    d4.utils.to_number("C O N H H H".split()),
))

# coordinates in Bohr
positions = d4.utils.pack((
    torch.tensor([
        [-3.81469488143921, +0.09993441402912, 0.00000000000000],
        [+3.81469488143921, -0.09993441402912, 0.00000000000000],
        [-2.66030049324036, -2.15898251533508, 0.00000000000000],
        [+2.66030049324036, +2.15898251533508, 0.00000000000000],
        [-0.73178529739380, -2.28237795829773, 0.00000000000000],
        [-5.89039325714111, -0.02589114569128, 0.00000000000000],
        [-3.71254944801331, -3.73605775833130, 0.00000000000000],
        [+3.71254944801331, +3.73605775833130, 0.00000000000000],
        [+0.73178529739380, +2.28237795829773, 0.00000000000000],
        [+5.89039325714111, +0.02589114569128, 0.00000000000000],
        [-2.74426102638245, +2.16115570068359, 0.00000000000000],
        [+2.74426102638245, -2.16115570068359, 0.00000000000000],
    ]),
    torch.tensor([
        [-0.55569743203406, +1.09030425468557, 0.00000000000000],
        [+0.51473634678469, +3.15152550263611, 0.00000000000000],
        [+0.59869690244446, -1.16861263789477, 0.00000000000000],
        [-0.45355203669134, -2.74568780438064, 0.00000000000000],
        [+2.52721209544999, -1.29200800956867, 0.00000000000000],
        [-2.63139587595376, +0.96447869452240, 0.00000000000000],
    ]),
))

# total charge of both system
charge = torch.tensor([0.0, 0.0])

# TPSS0-D4-ATM parameters
param = {
    "s6": positions.new_tensor(1.0),
    "s8": positions.new_tensor(1.85897750),
    "s9": positions.new_tensor(1.0),
    "a1": positions.new_tensor(0.44286966),
    "a2": positions.new_tensor(4.60230534),
}

# calculate dispersion energy in Hartree
energy = torch.sum(d4.dftd4(numbers, positions, charge, param), -1)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0088341432, -0.0027013607])
print(energy[0] - 2*energy[1])
# tensor(-0.0034314217)

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

This project is free software: you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This project is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the Lesser GNU General Public License for more details.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Lesser GNU General Public license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_dftd4-0.0.3.tar.gz (153.9 kB view details)

Uploaded Source

Built Distribution

tad_dftd4-0.0.3-py3-none-any.whl (106.2 kB view details)

Uploaded Python 3

File details

Details for the file tad_dftd4-0.0.3.tar.gz.

File metadata

  • Download URL: tad_dftd4-0.0.3.tar.gz
  • Upload date:
  • Size: 153.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for tad_dftd4-0.0.3.tar.gz
Algorithm Hash digest
SHA256 fc85e46f4bdcd37b4fd8b68858a865f7da6cca627d0ab5b219594ff3cbb9e825
MD5 bc237fe317bea12aa8650814176e0277
BLAKE2b-256 ddc17869e3ad301c32adc90ed100fd20a417f91c7eb8cef08f5b59f861e2e866

See more details on using hashes here.

File details

Details for the file tad_dftd4-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: tad_dftd4-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 106.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for tad_dftd4-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ce19aefc93829a6647d1493021f8df5745cd9dd2d6ac7c5c0c127603e4cf129d
MD5 cc87f1da9789843c0fc3717789d53244
BLAKE2b-256 e624ce4aaecbfc5e61e9ff1e2fa15357fe333af924ad34f17a17886595942dae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page