Skip to main content

Torch autodiff DFT-D4 implementation

Project description

Torch Autodiff for DFT-D4

Compatibility: Python Versions PyTorch Versions
Availability: Release PyPI Conda Version Apache-2.0
Status: Test Status Ubuntu Test Status macOS Test Status Windows Build Status Documentation Status pre-commit.ci Status Coverage

Implementation of the DFT-D4 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D4 dispersion model, see:

  • E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215
  • E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222
  • E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys., 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A

For alternative implementations, also check out:

  • dftd4: Implementation of the DFT-D4 dispersion model in Fortran with Python bindings.
  • cpp-d4: Implementation of the DFT-D4 dispersion model in C++.

Installation

pip

tad-dftd4 can easily be installed with pip.

pip install tad-dftd4

conda

tad-dftd4 is also available from conda.

conda install tad-dftd4

From source

This project is hosted on GitHub at dftd4/tad-dftd4. Obtain the source by cloning the repository with

git clone https://github.com/dftd4/tad-dftd4
cd tad-dftd4

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yaml
mamba activate torch

Install this project with pip in the environment

pip install .

The following dependencies are required

Development

For development, additionally install the following tools in your environment.

mamba install black covdefaults mypy pre-commit pylint pytest pytest-cov pytest-xdist tox
pip install pytest-random-order

With pip, add the option -e for installing in development mode, and add [dev] for the development dependencies

pip install -e .[dev]

The pre-commit hooks are initialized by running the following command in the root of the repository.

pre-commit install

For testing all Python environments, simply run tox.

tox

Note that this randomizes the order of tests but skips "large" tests. To modify this behavior, tox has to skip the optional posargs.

tox -- test

Examples

The following example shows how to calculate the DFT-D4 dispersion energy for a single structure.

import torch
import tad_dftd4 as d4
import tad_mctc as mctc

numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())

# coordinates in Bohr
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)

# total charge of the system
charge = torch.tensor(0.0)

# TPSSh-D4-ATM parameters
param = {
    "s6": positions.new_tensor(1.0),
    "s8": positions.new_tensor(1.85897750),
    "s9": positions.new_tensor(1.0),
    "a1": positions.new_tensor(0.44286966),
    "a2": positions.new_tensor(4.60230534),
}

energy = d4.dftd4(numbers, positions, charge, param)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0020841344, -0.0018971195, -0.0018107513, -0.0018305695,
#         -0.0021737693, -0.0019484236, -0.0022788253, -0.0004080658,
#         -0.0004261866, -0.0004199839, -0.0004280768, -0.0005108935])

The next example shows the calculation of dispersion energies for a batch of structures.

import torch
import tad_dftd4 as d4
import tad_mctc as mctc

# S22 system 4: formamide dimer
numbers = mctc.batch.pack((
    mctc.convert.symbol_to_number("C C N N H H H H H H O O".split()),
    mctc.convert.symbol_to_number("C O N H H H".split()),
))

# coordinates in Bohr
positions = mctc.batch.pack((
    torch.tensor([
        [-3.81469488143921, +0.09993441402912, 0.00000000000000],
        [+3.81469488143921, -0.09993441402912, 0.00000000000000],
        [-2.66030049324036, -2.15898251533508, 0.00000000000000],
        [+2.66030049324036, +2.15898251533508, 0.00000000000000],
        [-0.73178529739380, -2.28237795829773, 0.00000000000000],
        [-5.89039325714111, -0.02589114569128, 0.00000000000000],
        [-3.71254944801331, -3.73605775833130, 0.00000000000000],
        [+3.71254944801331, +3.73605775833130, 0.00000000000000],
        [+0.73178529739380, +2.28237795829773, 0.00000000000000],
        [+5.89039325714111, +0.02589114569128, 0.00000000000000],
        [-2.74426102638245, +2.16115570068359, 0.00000000000000],
        [+2.74426102638245, -2.16115570068359, 0.00000000000000],
    ]),
    torch.tensor([
        [-0.55569743203406, +1.09030425468557, 0.00000000000000],
        [+0.51473634678469, +3.15152550263611, 0.00000000000000],
        [+0.59869690244446, -1.16861263789477, 0.00000000000000],
        [-0.45355203669134, -2.74568780438064, 0.00000000000000],
        [+2.52721209544999, -1.29200800956867, 0.00000000000000],
        [-2.63139587595376, +0.96447869452240, 0.00000000000000],
    ]),
))

# total charge of both system
charge = torch.tensor([0.0, 0.0])

# TPSSh-D4-ATM parameters
param = {
    "s6": positions.new_tensor(1.0),
    "s8": positions.new_tensor(1.85897750),
    "s9": positions.new_tensor(1.0),
    "a1": positions.new_tensor(0.44286966),
    "a2": positions.new_tensor(4.60230534),
}

# calculate dispersion energy in Hartree
energy = torch.sum(d4.dftd4(numbers, positions, charge, param), -1)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0088341432, -0.0027013607])
print(energy[0] - 2*energy[1])
# tensor(-0.0034314217)

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

This project is licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_dftd4-0.1.2.tar.gz (85.9 kB view details)

Uploaded Source

Built Distribution

tad_dftd4-0.1.2-py3-none-any.whl (98.3 kB view details)

Uploaded Python 3

File details

Details for the file tad_dftd4-0.1.2.tar.gz.

File metadata

  • Download URL: tad_dftd4-0.1.2.tar.gz
  • Upload date:
  • Size: 85.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tad_dftd4-0.1.2.tar.gz
Algorithm Hash digest
SHA256 7267824b766f86d3b8c05f17361684a8e8bc918de9b09c9159255061b61303b1
MD5 0e7308df075e8af751b194df3e4ac100
BLAKE2b-256 2bad0c52ea1a3e44637d9897bcfb75ec06f73c1dd38d603fbc1fd76d7d1d4f02

See more details on using hashes here.

File details

Details for the file tad_dftd4-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: tad_dftd4-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 98.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tad_dftd4-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b92e0f539222ded7803fa0723f450b2bb6f0a391f93b0de2082ca2aea4f0ff40
MD5 b214ce728a2c1c4a96e1f38928d578f7
BLAKE2b-256 55d6a0111e8f35a6d149994a968447eb33ab0be2cbdb093793ca42101ed9bd3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page