Skip to main content

Torch Autodiff Utility

Project description

Python Versions Release PyPI LGPL-3.0 CI Documentation Status Coverage pre-commit.ci status

This library is a collection of utility functions that are used in PyTorch (re-)implementations of projects from the Grimme group. In particular, the tad-mctc library provides:

  • autograd functions (Jacobian, Hessian)

  • batch utility (packing, masks, …)

  • atomic data (radii, EN, example molecules, …)

  • io (reading coordinate files)

  • coordination numbers

  • safeops (autograd-safe implementations of common functions)

  • typing (base class for tensor-like behavior of arbitrary classes)

  • units

The name is inspired by the Fortran pendant “modular computation tool chain library” (mctc-lib).

Installation

pip

tad-mctc can easily be installed with pip.

pip install tad-mctc

From source

This project is hosted on GitHub at tad-mctc/tad-mctc. Obtain the source by cloning the repository with

git clone https://github.com/tad-mctc/tad-mctc
cd tad-mctc

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yaml
mamba activate torch

Install this project with pip in the environment

pip install .

The following dependencies are required

Development

For development, additionally install the following tools in your environment.

mamba install black covdefaults mypy pre-commit pylint pytest pytest-cov pytest-xdist tox
pip install pytest-random-order

With pip, add the option -e for installing in development mode, and add [dev] for the development dependencies

pip install -e .[dev]

The pre-commit hooks are initialized by running the following command in the root of the repository.

pre-commit install

For testing all Python environments, simply run tox.

tox

Note that this randomizes the order of tests but skips “large” tests. To modify this behavior, tox has to skip the optional posargs.

tox -- test

Examples

The following example shows how to calculate the DFT-D4 dispersion energy for a single structure.

import torch
import tad_mctc as mctc

numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())

# coordinates in Bohr
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)

# calculate EEQ coordination number
cn = mctc.ncoord.cn_eeq(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([3.0519218445, 3.0177774429, 3.0132560730, 3.0197706223,
#         3.0779352188, 3.0095663071, 1.0991339684, 0.9968624115,
#         0.9943327904, 0.9947233200, 0.9945874214, 0.9945726395])

The next example shows the calculation of dispersion energies for a batch of structures.

import torch
import tad_mctc as mctc

# S22 system 4: formamide dimer
numbers = mctc.batch.pack((
    mctc.convert.symbol_to_number("C C N N H H H H H H O O".split()),
    mctc.convert.symbol_to_number("C O N H H H".split()),
))

# coordinates in Bohr
positions = mctc.batch.pack((
    torch.tensor([
        [-3.81469488143921, +0.09993441402912, 0.00000000000000],
        [+3.81469488143921, -0.09993441402912, 0.00000000000000],
        [-2.66030049324036, -2.15898251533508, 0.00000000000000],
        [+2.66030049324036, +2.15898251533508, 0.00000000000000],
        [-0.73178529739380, -2.28237795829773, 0.00000000000000],
        [-5.89039325714111, -0.02589114569128, 0.00000000000000],
        [-3.71254944801331, -3.73605775833130, 0.00000000000000],
        [+3.71254944801331, +3.73605775833130, 0.00000000000000],
        [+0.73178529739380, +2.28237795829773, 0.00000000000000],
        [+5.89039325714111, +0.02589114569128, 0.00000000000000],
        [-2.74426102638245, +2.16115570068359, 0.00000000000000],
        [+2.74426102638245, -2.16115570068359, 0.00000000000000],
    ]),
    torch.tensor([
        [-0.55569743203406, +1.09030425468557, 0.00000000000000],
        [+0.51473634678469, +3.15152550263611, 0.00000000000000],
        [+0.59869690244446, -1.16861263789477, 0.00000000000000],
        [-0.45355203669134, -2.74568780438064, 0.00000000000000],
        [+2.52721209544999, -1.29200800956867, 0.00000000000000],
        [-2.63139587595376, +0.96447869452240, 0.00000000000000],
    ]),
))

# calculate coordination number
cn = mctc.ncoord.cn_d4(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([[2.6886456013, 2.6886456013, 2.6314170361, 2.6314167976,
#          0.8594539165, 0.9231414795, 0.8605306745, 0.8605306745,
#          0.8594539165, 0.9231414795, 0.8568341732, 0.8568341732],
#         [2.6886456013, 0.8568335176, 2.6314167976, 0.8605306745,
#          0.8594532013, 0.9231414795, 0.0000000000, 0.0000000000,
#          0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000]])

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

This project is free software: you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This project is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the Lesser GNU General Public License for more details.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Lesser GNU General Public license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_mctc-0.0.2.tar.gz (68.6 kB view details)

Uploaded Source

Built Distribution

tad_mctc-0.0.2-py3-none-any.whl (93.4 kB view details)

Uploaded Python 3

File details

Details for the file tad_mctc-0.0.2.tar.gz.

File metadata

  • Download URL: tad_mctc-0.0.2.tar.gz
  • Upload date:
  • Size: 68.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for tad_mctc-0.0.2.tar.gz
Algorithm Hash digest
SHA256 04bfcd5dbcf87456414306e851f4abbaaa542d33a8198a31ff02076bb1d7145d
MD5 4906c2fadb9828e8b6cf4bf5006c5050
BLAKE2b-256 614cdc6faa59ed0da407d7b14e5d7f205d70be127073c8abd99ff7953c93ecae

See more details on using hashes here.

File details

Details for the file tad_mctc-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: tad_mctc-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 93.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for tad_mctc-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0c47a3438cc2fc362577d2e3e71ac69f8215c3714ebed862fa2c30c67ca25bde
MD5 944d44da25135960b8aacb5cbeea3c96
BLAKE2b-256 b5842f38484fdbba9aee4ad7b7aaedd0723ee56f79d10e50b974f64a98a5e056

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page