Skip to main content

A suite of terrain analysis tools for Google Earth Engine.

Project description

PyPI version

Google Earth Engine (GEE) is a high-performance cloud-based platform for processing geospatial data.

There is a myriad of processing toolboxes in GEE, but this repository/package aims to contribute to the GEE community for making terrain analysis seamlessly.

Installation

Terrain Analysis in Google Earth Engine (TAGEE) is a repository that contains the GEE Javascript code and a Python API implementation with reproducible examples for both.

You can use TAGEE in the Earth Engine code editor with a require statement.

var TAGEE = require('users/zecojls/TAGEE:TAGEE-functions');

Or install the Python package from pip:

pip install tagee

Additional examples information are below.

Feature Overview

Available terrain attributes:

Attribute Unit Description
Elevation meter Height of terrain above sea level
Slope degree Slope gradient
Aspect degree Compass direction
Hillshade dimensionless Brightness of the illuminated terrain
Northness dimensionless Degree of orientation to North
Eastness dimensionless Degree of orientation to East
Horizontal curvature meter Curvature tangent to the contour line
Vertical curvature meter Curvature tangent to the slope line
Mean curvature meter Half-sum of the two orthogonal curvatures
Minimal curvature meter Lowest value of curvature
Maximal curvature meter Highest value of curvature
Gaussian curvature meter Product of maximal and minimal curvatures
Shape Index dimensionless Continuous form of the Gaussian landform classification

The users are referred to Florinsky (2016) for mathematical concepts of geomorphometry, a historical overview of the progress of digital terrain modelling, and the notion of the topographic surface and its limitations.

Florinsky, Igor. Digital terrain analysis in soil science and geology. Academic Press, 2016.

Please, cite the following paper when using TAGEE:

Safanelli, J.L.; Poppiel, R.R.; Ruiz, L.F.C.; Bonfatti, B.R.; Mello, F.A.O.; Rizzo, R.; Demattê, J.A.M. Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance Global-Scale Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 400. DOI: https://doi.org/10.3390/ijgi9060400

Important note!

As TAGEE uses spheroidal geometries and elevation nodes from a 3x3 moving window to calculate partial derivatives and hence terrain attributes, the visualization of the outputs is affected by the scale, which require the adjustment of the histogram for proper visualization. This happens because GEE produces different pyramids from your data (from the local up to the global scale) and consequently the pixel size changes dynamically, affecting the range of the estimated attribute values. Until you specify your final resolution, say 30m/pixel, the pyramids will dynamically affect the visualization of an output for different visualizaiton scales. You can determine your final resolution by exporting the results to assets and importing back further processing or map composition.

Minimal reproducible example

OPEN THE EXAMPLE DIRECTLY IN THE GEE CODE EDITOR.

NOTE: Any Earth Engine user with the above link can use it to view and run the example code. However, you need to login.

Javascript

// Importing module

var TAGEE = require('users/zecojls/TAGEE:TAGEE-functions');

// World bounding box

var bbox = ee.Geometry.Rectangle({coords: [-180, -60, 180, 60], geodesic: false});

// Water mask

var hansen_2016 = ee.Image('UMD/hansen/global_forest_change_2016_v1_4').select('datamask');
var hansen_2016_wbodies = hansen_2016.neq(1).eq(0);
var waterMask = hansen_2016.updateMask(hansen_2016_wbodies);

// Loading SRTM 30 m

var demSRTM = ee.Image('USGS/SRTMGL1_003').rename('DEM');

// Smoothing filter
var gaussianFilter = ee.Kernel.gaussian({
  radius: 3, sigma: 2, units: 'pixels', normalize: true
});

// Smoothing the DEM with the gaussian kernel.
var demSRTM = demSRTM.convolve(gaussianFilter).resample("bilinear");

// Terrain analysis

var DEMAttributes = TAGEE.terrainAnalysis(TAGEE, demSRTM).updateMask(waterMask);
print(DEMAttributes.bandNames(), 'Parameters of Terrain');

// Visualization

var vizVC = TAGEE.makeVisualization(DEMAttributes, 'VerticalCurvature', 'level2', bbox, 'rainbow');
Map.addLayer(vizVC, {}, 'VerticalCurvature');
Map.setCenter(0,0,2);

Example description

In the Javascript code editor https://code.earthengine.google.com/, it is necessary to import the module TAGEE-functions.

var TAGEE = require('users/zecojls/TAGEE:TAGEE-functions');

Then, you need to define the bounding box (study region limits) and import the Digital Elevation Model for terrain analysis (e.g. SRTM 30 m). Note that the bounding box is only necessary for generating a visualization.

// World bounding box

var bbox = ee.Geometry.Rectangle({coords: [-180, -60, 180, 60], geodesic: false});

// Water mask

var hansen_2016 = ee.Image('UMD/hansen/global_forest_change_2016_v1_4').select('datamask');
var hansen_2016_wbodies = hansen_2016.neq(1).eq(0);
var waterMask = hansen_2016.updateMask(hansen_2016_wbodies);

// Loading SRTM 30 m

var demSRTM = ee.Image('USGS/SRTMGL1_003').rename('DEM');

// Smoothing filter
var gaussianFilter = ee.Kernel.gaussian({
  radius: 3, sigma: 2, units: 'pixels', normalize: true
});

// Smoothing the DEM with the gaussian kernel.
var demSRTM = demSRTM.convolve(gaussianFilter).resample("bilinear");

Finally, you can run the TAGEE module for calculating the terrain attributes.

// Terrain analysis

var DEMAttributes = TAGEE.terrainAnalysis(TAGEE, demSRTM).updateMask(waterMask);
print(DEMAttributes.bandNames(), 'Parameters of Terrain');

Console output (don't copy):

List (13 elements){
0: Elevation
1: Slope
2: Aspect
3: Hillshade
4: Northness
5: Eastness
6: HorizontalCurvature
7: VerticalCurvature
8: MeanCurvature
9: GaussianCurvature
10: MinimalCurvature
11: MaximalCurvature
12: ShapeIndex}

TAGEE has an additional feature for making the visualization easier and adapated to a dynamic scale (legend), once the pixel distances for the derivatives calculations are influenced by the visualization level. The legend limits are estimated by the 5th and 95th percentiles existing within the bounding box.

// Visualization

var vizVC = TAGEE.makeVisualization(DEMAttributes, 'VerticalCurvature', 'level2', bbox, 'rainbow');
Map.addLayer(vizVC, {}, 'VerticalCurvature');
Map.setCenter(0,0,2);

For the function makeVisualization, you need to specify:

  • Attributes in multiband object
  • Attribute name (string, e.g. 'VerticalCurvature')
  • Visualization level (string, e.g. 'level2')
  • Bounding box object
  • Color pallete (string, e.g. 'rainbow')

The visualization levels are:

Visualization level Pixel resolution (m)
'level0' 157000
'level1' 78000
'level2' 39000
'level3' 20000
'level4' 10000
'level5' 5000
'level6' 2000
'level7' 1000
'level8' 611
'level9' 306
'level10' 153
'level11' 76
'level12' 38
'level13' 19
'level14' 10
'level15' 5

Available color palettes: 'rainbow', 'inferno', 'cubehelix', 'red2green', 'green2red', 'elevation', 'aspect' and 'hillshade'.

Python API

The Python TAGEE package is implemented very similarly to the JS version.

# import & initialize the earth engine API
import ee
ee.Initialize()

# import relevant function
from tagee import terrainAnalysis

# set up a smoothed DEM
gaussianFilter = ee.Kernel.gaussian(
  radius=3, sigma=2, units='pixels', normalize=True
)
srtmSmooth = ee.Image("USGS/SRTMGL1_003").convolve(gaussianFilter).resample("bilinear")

# Calculate terrain metrics over a given geometry.
geom = ee.FeatureCollection(ee.Geometry.Rectangle(-111, 40, -110.9, 40.1))
terrainMetrics = terrainAnalysis(srtmSmooth)

# Summarize the metrics in the geometry
reduction = terrainMetrics.reduceRegions(
  geom,
  ee.Reducer.median()
)

print(reduction.getInfo())

For any request, comment and suggestion, please send me a email (my github nickname at gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tagee-0.2.0.tar.gz (38.2 kB view details)

Uploaded Source

Built Distribution

tagee-0.2.0-py3-none-any.whl (34.1 kB view details)

Uploaded Python 3

File details

Details for the file tagee-0.2.0.tar.gz.

File metadata

  • Download URL: tagee-0.2.0.tar.gz
  • Upload date:
  • Size: 38.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for tagee-0.2.0.tar.gz
Algorithm Hash digest
SHA256 4f5c4115396d365dcd745f145d2444a4861f74cb532a19c8abd425d01e636133
MD5 63885d995145e6155b2d03cf8a0cdcb7
BLAKE2b-256 60e572d43aa8f0d8acc0c255608839115b0b486d5304bbd7b6c67888720540fd

See more details on using hashes here.

File details

Details for the file tagee-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: tagee-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 34.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for tagee-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 156a45dbb8218eab853827e090e2c39aa3cb38757024d44a473d74cda9654858
MD5 0bda79b803b4c575bb3933ce0c9bba61
BLAKE2b-256 82f8c62f644e97ad009fd23ea92b0aeb04f10438d162359d577cc5d57fe8f2bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page