Skip to main content

No project description provided

Project description

tailwiz

tailwiz is an AI-powered tool for analyzing text. It has three main capabilties: classifying text (tailwiz.classify), parsing text given context and prompts (tailwiz.parse), and generating text given prompts (tailwiz.generate).

Quickstart

Install tailwiz by entering into command line:

python -m pip install --upgrade tailwiz

Then run the following in a Python environment for a quick example of text classification:

import tailwiz
import pandas as pd

# Create a pandas DataFrame of labeled text. The 'label'
# column contains 'mean' or 'nice' as labels for each text.
labeled_examples = pd.DataFrame(
    [
        ['You make me vomit', 'mean'],
        ['Love you lots', 'nice'],
        ['You are the best', 'nice'],
    ],
    columns=['text', 'label'],
)

# Create a pandas DataFrame of text to be classified by tailwiz.
# This DataFrame does not have a 'label' column. The labels here
# will be created by tailwiz.
to_classify = pd.DataFrame(
    ['Have a great day', 'I hate you'],
    columns=['text'],
)

# Classify text using labeled_examples as reference data.
results = tailwiz.classify(
    to_classify,
    labeled_examples=labeled_examples,
)

# The results are a copy of text with a new column populated
# with AI-generated labels.
print(results)

Installation

Install tailwiz through pip by entering the following into command line:

python -m pip install --upgrade tailwiz

Usage

In this section, we outline the three main functions of tailwiz and provide examples.

tailwiz.classify(to_classify, labeled_examples=None, output_metrics=False)

Given text, classify the text.

Parameters:

  • to_classify : pandas.DataFrame with a column named 'text' (str). Text to be classified.
  • labeled_examples : pandas.DataFrame with columns named 'text' (str) and 'label' (str, int), default None. Labeled examples to enhance the performance of the classification task. The classified text is in the 'text' column and the text's labels are in the 'label' column.
  • output_metrics : bool, default False. Whether to output performance_estimate together with results in a tuple.

Returns:

  • results : pandas.DataFrame. A copy of to_classify with a new column, 'tailwiz_label', containing classification results.
  • performance_estimate : Dict[str, float]. Dictionary of metric name to metric value mappings. Included together with results in a tuple if output_metrics is True. Uses labeled_examples to give an estimate of the accuracy of the classification.

Example:

import tailwiz
import pandas as pd

labeled_examples = pd.DataFrame(
    [
        ['You make me vomit', 'mean'],
        ['Love you lots', 'nice'],
        ['You are the best', 'nice'],
    ],
    columns=['text', 'label'],
)
to_classify = pd.DataFrame(
    ['Have a great day', 'I hate you'],
    columns=['text'],
)
results = tailwiz.classify(
    to_classify,
    labeled_examples=labeled_examples,
)
print(results)

tailwiz.parse(to_parse, labeled_examples=None, output_metrics=False)

Given a prompt and a context, parse the answer from the context.

Parameters:

  • to_parse : pandas.DataFrame with columns named 'context' (str) and 'prompt' (str). Labels will be parsed directly from contexts in 'context' according to the prompts in 'prompt'.
  • labeled_examples : pandas.DataFrame with columns named 'context' (str), 'prompt' (str), and 'label' (str), default None. Labeled examples to enhance the performance of the parsing task. The labels in 'label' must be extracted exactly from the contexts in 'context' (as whole words) according to the prompts in 'prompt'.
  • output_metrics : bool, default False. Whether to output performance_estimate together with results in a tuple.

Returns:

  • results : pandas.DataFrame. A copy of to_parse with a new column, 'tailwiz_label', containing parsed results.
  • performance_estimate : Dict[str, float]. Dictionary of metric name to metric value mappings. Included together with results in a tuple if output_metrics is True. Uses labeled_examples to give an estimate of the accuracy of the parsing job.

Example:

import tailwiz
import pandas as pd

labeled_examples = pd.DataFrame(
    [
        ['Extract the money.', 'He owed me $100', '$100'],
        ['Extract the money.', '¥5000 bills are common', '¥5000'],
        ['Extract the money.', 'Eggs rose to €5 this week', '€5'],
    ],
    columns=['prompt', 'context', 'label'],
)
to_parse = pd.DataFrame(
    [['Extract the money.', 'Try to save at least £10']],
    columns=['prompt', 'context'],
)
results = tailwiz.parse(
    to_parse,
    labeled_examples=labeled_examples,
)
print(results)

tailwiz.generate(to_generate, labeled_examples=None, output_metrics=False)

Given a prompt, generate an answer.

Parameters:

  • to_generate : pandas.DataFrame with a column named 'prompt' (str). Prompts according to which labels will generated.
  • labeled_examples : pandas.DataFrame with columns named 'prompt' (str) and 'label' (str), default None. Labeled examples to enhance the performance of the parsing task. The labels in 'label' should be responses to the prompts in 'prompt'.
  • output_metrics : bool, default False. Whether to output performance_estimate together with results in a tuple.

Returns:

  • results : pandas.DataFrame. A copy of to_generate with a new column, 'tailwiz_label', containing generated results.
  • performance_estimate : Dict[str, float]. Dictionary of metric name to metric value mappings. Included together with results in a tuple if output_metrics is True. Uses labeled_examples to give an estimate of the accuracy of the text generation job.

Example:

import tailwiz
import pandas as pd

labeled_examples = pd.DataFrame(
    [
        ['Label this sentence as "positive" or "negative": I love puppies!', 'positive'],
        ['Label this sentence as "positive" or "negative": I do not like you at all.', 'negative'],
        ['Label this sentence as "positive" or "negative": Love you lots.', 'positive'],
    ],
    columns=['prompt', 'label']
)
to_generate = pd.DataFrame(
    ['Label this sentence as "positive" or "negative": I am crying my eyes out.'],
    columns=['prompt']
)
results = tailwiz.generate(
    to_generate,
    labeled_examples=labeled_examples,
)
print(results)

Templates (Notebooks)

Use these Jupyter Notebook examples as templates to help load your data and run any of the three tailwiz functions:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tailwiz-0.0.19.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

tailwiz-0.0.19-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file tailwiz-0.0.19.tar.gz.

File metadata

  • Download URL: tailwiz-0.0.19.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for tailwiz-0.0.19.tar.gz
Algorithm Hash digest
SHA256 43492bd072c4dcb583891d87f009006ee0b4c4cb13b59258b94fcd5132c966e8
MD5 e7e30ae0fb24ff0f9eb1ebde803edef3
BLAKE2b-256 340b4f37bf93d137483a452b600c90cbf728be7ea1e3732934034b8a5fe21a32

See more details on using hashes here.

File details

Details for the file tailwiz-0.0.19-py3-none-any.whl.

File metadata

  • Download URL: tailwiz-0.0.19-py3-none-any.whl
  • Upload date:
  • Size: 13.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for tailwiz-0.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 1ed32e2956715eeb87bc6cfbe23d1a8dc563494daa0f2411db512f1a685d0125
MD5 1f28f46b3587e69dd8077c80debd1aa4
BLAKE2b-256 63716ee6c6d4c1718d999035331126607c77c67abeace32801cad60bf1317faf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page